Parker 提议批准上诉,Sisniega 女士附议。Parker 女士撤回了她的动议,Sisniega 女士撤回了她的附议。Parker 女士提议批准上诉,部分原因是伪造,部分原因是积极执业,驳回上诉,并要求申请人在 1 年内完成董事会认证的 NCT 计划。完成该计划后,申请人可能会获得 NCT。Brandt 女士附议,动议通过。申请人 #2598 – 似乎对执行董事的决定提出上诉。申请人提交了一份简短的摘要,董事会成员提出了问题。讨论后,Beckmann 博士提议批准上诉并颁发完全执照,并签署了一份同意令,要求申请人完成 6 个月的监督、两个季度报告和 24 小时 CE。Morren 先生附议,动议通过。申请人 #2576 – 似乎对执行董事的决定提出上诉,原因是积极执业。申请人提交了一份简短的摘要,董事会成员提出了问题。讨论后,贝克曼博士提议批准上诉,并颁发全面执照,同时签署一份协议命令,要求申请人接受 3 个月的监督。帕克女士附议。贝克曼博士撤回了他的动议,帕克女士撤回了她的附议。贝克曼博士提议批准上诉,并颁发为期 3 个月的监督临时执照,期限为 6 个月内完成所有文书工作和要求。瓦德尔女士附议,动议通过。申请人 #2591 – 似乎对执行董事的决定提出上诉。申请人提交了一份简短的摘要,董事会成员提出了问题。讨论后,贝克曼博士提议批准上诉,并颁发为期 3 个月的监督临时执照,期限为 6 个月。成功完成监督后,可能会颁发执照。卢茨女士附议,动议通过。(瓦德尔女士回避)
1 degéomagnétisme,瑞士大学,瑞士,marcus.gurk@unine.ch 2中心D'Hydrogéologie,瑞士大学,瑞士大学,弗兰克(Frank.bosch.bosch.bosch.bosch.bosch@unine.ch exprient for Selferation for Selferation for Selferation for Selferation forefface facee)火山区。前提是满足了两个条件,他们在实验上发现了负自力(SP)异常的范围与不饱和区域的厚度之间的线性关系。第一个条件是不饱和区域的电阻率与底层和水饱和区的电阻率之间的强对比度。第二条件是不饱和区域的同质性。SP地图的定性解释表明,最大负值的线对应于排水轴和两个分水岭之间边界的最小负值线(Jackson&Kauahikaua(1987))。我们期望类似的条件在碳酸盐含水层中有效。尤其是在karstic洞穴中,空气层产生的电阻率对比必须很重要,因此SPS技术可用于检测这些结构。是由这一假设的动机,与水文地质学中心Neuchâtel(Chyn)进行了实验。2调查区域实验实验是在Vers-Chez-Le-Brandt(Bosch&Gurk,2000年)的洞穴上进行的,该实验是在法国附近的瑞士Jura Mountains,CantonNeuchâtel的折叠式石灰石中进行的(图。1)。在该地区中生代石灰石和泥浆中,被薄薄的季节沉积物覆盖。洞穴的发展为腔/阿格维亚上喀布尔的石灰石的方向约为N140°(图2),长度约为260m。该序列的泥土层允许开发一条小的地下河。构造特征(例如断层)在洞穴内可见(Müller,1981)。这些罢工方向与瑞士折叠的jura中控制压裂和凸出的局部应力参数(主剪切= N0°,σ1= N130°-N150°,σ2= N40°-N50°)。
路易斯安那能源服务有限责任公司 (LES) 董事会 Karen D. Fili 女士 LES 董事会主席 总裁兼首席执行官 Chris Chater 先生 董事会成员 Paul Lorskulsint 先生 董事会成员 – 任命 2021 年 7 月 7 日 David Sexton 先生 董事会成员 – 任命 2020 年 8 月 10 日 – 辞职 2023 年 1 月 13 日 Stephen Cowne 先生 董事会成员 – 任命 2020 年 8 月 10 日 – 辞职 2021 年 7 月 6 日 LES 管理层 Karen D. Fili 女士 LES 总裁兼首席执行官 Stephen Cowne 先生 LES 首席核能官 – 辞职 2021 年 7 月 6 日 Paul Lorskulsint 先生 LES 合规经理 – 辞职 2021 年 7 月 1 日 Paul Lorskulsint 先生 LES 首席核能官 – 任命 2021 年 7 月 7 日 Wyatt Padgett 先生 LES 合规经理 – 任命2021 年 7 月 2 日 Steven G. Roddy 先生 LES 现场控制员 Brandt Graham 先生 LES 秘书兼高级律师——已辞职 2022 年 11 月 1 日 Jenise Dahlin 女士 LES 安全和应急准备经理——调任至 URENCO LTD 2021 年 9 月 1 日 Staci White 女士 LES 安全和应急准备经理——已任命 2021 年 9 月 1 日 Jody Blackshear 先生 LES 运营经理——调任至 URENCO LTD 2021 年 1 月 1 日 Scott Diggs 先生 LES 运营经理——已任命 2021 年 1 月 1 日 Randy Shaffer 先生 LES 维护经理——已辞职 2021 年 7 月 6 日 Dale Rush 先生 LES 维护经理——已任命 2021 年 7 月 7 日——已辞职 2023 年 1 月 16 日 Nicole Wyatt 女士 LES 人力资源经理 Stan Scott 先生 LES 工程和项目经理——已辞职 2021 年 7 月 30 日 Steve Magill LES 临时工程和项目经理——2021 年 8 月 1 日任命——2021 年 11 月 28 日辞职 Brian Dorathy 先生 LES 工程和项目经理——2021 年 11 月 29 日任命 Steve Magill 先生 LES 退役和回收经理——2021 年 4 月 11 日辞职并从 LES 管理团队中除名——2021 年 4 月 12 日 Shawn O'Brien 先生 LES 物流经理——2021 年 11 月 18 日任命 Lisa Hardison 女士 LES 通讯经理
请为以下人员的福祉祈祷:Elliot Adkisson III 中士、Jason Alexander、Matthew Alexander、Michael Allen 中士、Jason Annese 下士、Daniel Bilgic 一等兵、Joseph Bilgic 一等兵、Josh Blassman、Justin Beck 中尉、Bryan Bolt III、Stephen Bray III 下士、Jack Brandt 中尉、Evan Brown MIDN USNA、Denis Brown 上校、Ryan Brunk 少校、Matthew Buyske 上尉、Matthew Chybinski 少校、John Ciacci 中士、Michael Costello、Zachary Crawford 中士、Gwen Daley SR、Joseph DeStefano、Josh Dikmak、Christopher DiNote 上校、John Dixon、Silvio Duplechan Jr 下士、Mohamed Embaby 中士、Andrew Ensign 列兵、Thomas Farley、Luca Franchi、Gerard Gagnon 上校、Lucas Goergen 中士、Michael Goncalves 下士、Evan Grabowski 专家。 Andrew Guattari、LtCol John Harding、LtCol Bill Harkins、Jared Hatley、SR Hannah Hayes、James Hayes、Rick Heipertz、Spc William Hornung、Sgt Jeffrey Jayne、PFC David Johnson、Matt Kotowski、PO2 Dixon Kehoe、PO3 Maxx Kehoe、SSgt Kris Knaup、Brian Kohler、Sgt Jonathan Krall、少尉 Trevor Kuroczka、上尉 Scott Lafferty、中尉 John Paul Lamorte、少尉 Jarrod LaRosa、A1C 级 Daniel Little、SSG Stephen MacCrory、William Mace、Bryan Marines、Cayden Martin、列兵。一等兵马修·马辛斯 (Matthew Marthins)、下士安东尼·马斯特朗杰洛 (Anthony Mastrangelo)、一等兵马修·马斯特朗杰洛 (Matthew Mastrangelo)、上尉米歇尔·马修斯 (Michelle Mathews)、中尉谢恩·毛罗 (Shane Mauro)、布伦登·麦基特里克 (Brenden McKittrick)、中士布莱恩·麦克纳利 (Brian McNally)、中士卢克·麦克纳利 (Luke McNally)、上尉贾里德·米勒 (Jared Miller)、高级军士长理查德·米勒三世 (Richard Miller III)、下士蒂莫西·米勒 (Timothy Miller)、中尉玛吉·蒙特桑蒂-鲍恩 (Maggie Montesanti-Bowen)、下士莎妮·诺恩 (Shannyn Noone)、A1C 安东尼·奥兰多 (Anthony Orlando Jr)、中士迈克尔·彼得森 (Michael Peterson)、鲍勃·波勒 (Bob Poller)、耳鼻喉科医师尼古拉斯·里奇 (Nicholas Ricci)、高级军士长金伯利·里波利 (Kimberly Ripoli)、道格·萨克特 (Doug Sackett)、克林顿·谢布纳 (Clinton Scheibner)、指挥官安德鲁·施瓦尔本伯格 (Andrew Schwalbenberg)、丹·沙纳汉 (Dan Shanahan) 上校、一等兵约瑟夫·塞勒 (Joseph Seller)、莫利纳·森普尔 (Molina Semple)、CW4 妮可·斯普罗瑟 (Nicole Sproesser)、中尉格雷戈里·斯威夫特 (Gregory Swift)、达拉斯·索普 (Dallas Thorp)、列兵杰克·威瑟姆 (Jake Witham)、卢克·威廉姆斯 (Luke Williams)、特里斯坦·伍德 (Tristan Wood)、高级军士长贾里德·扎瓦特 (Jaried Zavatter)、罗伯特·齐林斯基 (Robert Zielinski)、列兵。 Ian S. Evans 和 Shaun T. Lieb 上尉 EOD、Jack M. Tarzy、MIDN USN
Marc Albero FXI Diego Alonso-Tabares 空中客车 Aldo Arena AArena Consulting Inc Jon Argo Meggitt 聚合物与复合材料 Rockmart Michael Azarian Calce 马里兰大学 Jacque Bader 劳斯莱斯公司 Graham Baker 伊顿航空航天 Raymond Ball 美国海军 Michel Bardel Intertechnique Dave Barkley Electronics Inc James Barnett Lionbridge Technologies Inc Michael Beckman McGill Manufacturing Company Inc Stephanie Bendickson APS Aviation Inc Darin Bernardi Kopp Glass Inc Stan Biernat Moog Inc John Binford B&E Manufacturing Peter Bittner Constellium Robert Boman 洛克希德马丁导弹与火控 H Michael Bonner Cessna Aircraft Company Tim Boysen Michael Brandt Lifeport Inc Gary Brown Carpenter Technology Corp Christian Brull Schlegel Electronic Materials bvba David Brumbaugh John Buffin NAVAIR Gregg Butterfield Crane Co Eric Cahill UTC Aerospace Systems Jeffrey Calcaterra 美国空军 James Cannon Oxygen技术顾问有限责任公司 Dawn Caullwine Kevin Cecil John Bean Technologies Corp Randy Cepress GE 飞机发动机 Ken Chang Adel Wiggins Group Eric Chesmar 美国联合航空公司 Bruce Choate Ken Christian HellermannTyton Roger Christianson Robert Ciero 霍尼韦尔国际公司 Kenneth Clark Magnesium Elektron Mark Clark 波音公司 Roy Clarke Richard Clutterbuck Kevin Coderre Marmon 航空航天与国防 Paul Collins 美国海军航空兵系统公司 Lloyd Condra DfR Solutions Fred Cone Pratt & Whitney Joseph Contino Zodiac Aerospace Timothy Cornwell Pratt & Whitney Arthur Cortellucci John Cowie 铜业开发协会 Buddy Cressionnie ASD Expertise W Raymond Cribb Brock Crocker Vestergaard Co Inc Victor Dangerfield 环球合金公司 May Danhash Spencer 航空航天制造 Christopher Dann 加拿大运输部 民航 TCCA Diganta Das 马里兰大学 John Davies Kent DeFranco 洛克希德马丁公司 Marion DeWitt Laurent Decoux K-D Manitou Inc Dennis Deehan Bruce Delsing 波音商用飞机公司 Kevin Detring 洛克希德马丁航空公司 Walter Deutscher Altran Gmbh & Co KG Franck Devilder AUBERT & DUVAL
来自 a 达拉斯德克萨斯大学西南医学中心内科系、过敏和免疫学分部;b 波士顿麻省总医院内科系、风湿病、过敏和免疫学分部;c 默多克大学免疫学和传染病研究所;d 纳什维尔范德堡大学医学中心医学系;e 俄勒冈州立大学/俄勒冈健康科学大学药学院科瓦利斯诊所;f 圣地亚哥斯克里普斯诊所过敏、哮喘和免疫学系;g 辛辛那提大学医学院内科系、免疫学分部、过敏科;h 卫生研究方法、证据和影响系和 i 麦克马斯特大学医学系和 j 圣约瑟夫汉密尔顿研究所; k 金斯顿皇后大学医学系过敏和免疫学分部;l 巴尔的摩约翰霍普金斯大学医学院过敏和临床免疫学分部;m 科罗拉多大学医学院科罗拉多儿童医院过敏和免疫学食品挑战与研究单位科;n 圣路易斯华盛顿大学医学院儿科系过敏肺科分部;o 南佛罗里达大学莫尔萨尼医学院医学系过敏和免疫学分部和 p 坦帕 James A. Haley 退伍军人事务医院;q 孟菲斯田纳西大学健康科学中心过敏和免疫学分部;r 罗格斯新泽西医学院过敏分部; s 亚利桑那州斯科茨代尔梅奥诊所过敏、哮喘和临床免疫学分部;t 黎巴嫩达特茅斯-希区柯克医学中心儿科部;u 全国儿童医院过敏和免疫学分部,以及 v 哥伦布俄亥俄州立大学医学院;w 劳德代尔堡诺瓦东南对抗疗法医学院;以及 x 纽约西奈山伊坎医学院 Elliot and Roslyn Jaffe 食物过敏研究所儿科系过敏和免疫学分部。重印:实践参数联合工作组联络人:Rebecca Brandt,美国过敏、哮喘和免疫学学会,555 E. Wells Street, Suite 1100, Milwaukee, WI 53202。电子邮件:rbrandt@aaaai.org; JTFPP.allergy@gmail.com 实践参数联合工作组先前发布的实践参数和指南可在 http://www.allergyparameters.org、http://www. AAAAI.org 和 http://www.ACAAI.org 上找到。潜在利益冲突披露:实践参数联合工作组 (JTFPP) 成员和工作组成员的利益冲突披露表可在 www.allergyparameters.org 上找到。D.Khan 获得了以下机构的资金支持:
1。Lee J. †,Cooley D.,Wagner A.M.,Liston G.E. (2024+)通过参数的线性映射来投射未来的校准方法。 被接受的环境和生态统计。 2024年10月25日。 2。 Mhatre N.†,Cooley D.(2024)转换了时间序列极端的线性模型。 时间序列分析杂志,45,671-690。 https://doi.org/10.1111/jtsa.12732。 3。 Wixson,T。P.†,Cooley,D。(2023)季节性野生野生风险对变化的归因:统计极端方法。 应用气象与气候学杂志,62,1511-1521。 https://doi.org/10.1175/jamc-d-23-0072.1。 4。 Rohrbeck C.,Cooley D.(2023)使用极端主管模拟洪水事件集。 应用统计的年鉴,17:1333–1352 https://doi.org/10.1214/22-AOAS1672。 5。 Wagner A.M.,Bennett K.E.,Liston G.E.,Hiemstra C.A.和Cooley D.(2021)雪地占主导地位的极端变化的多个指标,美国水域Yakima River盆地地区,美国水,13:2608。 doi:0.3390/W13192608。 6。 Rutherford J.S,Sherwin E.D.,Ravikumar A.P.,Heath G.A.,Englander J.,Cooley D.,Lyon D.,Omara M.,Langt Q.,Brandt A.R. (2021)缩小差距:解释美国石油和天然气生产段甲烷库存的持续估计。 自然通讯,12:4715。 https://doi.org/10.1038/s41467-021-25017-4。 7。 修复M.†,Cooley D.,Thibaud E.(2020)同时进行空间验证的自回归模型。 环境,32:e2656。Lee J.†,Cooley D.,Wagner A.M.,Liston G.E.(2024+)通过参数的线性映射来投射未来的校准方法。被接受的环境和生态统计。2024年10月25日。2。Mhatre N.†,Cooley D.(2024)转换了时间序列极端的线性模型。时间序列分析杂志,45,671-690。 https://doi.org/10.1111/jtsa.12732。3。Wixson,T。P.†,Cooley,D。(2023)季节性野生野生风险对变化的归因:统计极端方法。应用气象与气候学杂志,62,1511-1521。 https://doi.org/10.1175/jamc-d-23-0072.1。4。Rohrbeck C.,Cooley D.(2023)使用极端主管模拟洪水事件集。应用统计的年鉴,17:1333–1352 https://doi.org/10.1214/22-AOAS1672。5。Wagner A.M.,Bennett K.E.,Liston G.E.,Hiemstra C.A.和Cooley D.(2021)雪地占主导地位的极端变化的多个指标,美国水域Yakima River盆地地区,美国水,13:2608。 doi:0.3390/W13192608。 6。 Rutherford J.S,Sherwin E.D.,Ravikumar A.P.,Heath G.A.,Englander J.,Cooley D.,Lyon D.,Omara M.,Langt Q.,Brandt A.R. (2021)缩小差距:解释美国石油和天然气生产段甲烷库存的持续估计。 自然通讯,12:4715。 https://doi.org/10.1038/s41467-021-25017-4。 7。 修复M.†,Cooley D.,Thibaud E.(2020)同时进行空间验证的自回归模型。 环境,32:e2656。Wagner A.M.,Bennett K.E.,Liston G.E.,Hiemstra C.A.和Cooley D.(2021)雪地占主导地位的极端变化的多个指标,美国水域Yakima River盆地地区,美国水,13:2608。 doi:0.3390/W13192608。6。Rutherford J.S,Sherwin E.D.,Ravikumar A.P.,Heath G.A.,Englander J.,Cooley D.,Lyon D.,Omara M.,Langt Q.,Brandt A.R. (2021)缩小差距:解释美国石油和天然气生产段甲烷库存的持续估计。 自然通讯,12:4715。 https://doi.org/10.1038/s41467-021-25017-4。 7。 修复M.†,Cooley D.,Thibaud E.(2020)同时进行空间验证的自回归模型。 环境,32:e2656。Rutherford J.S,Sherwin E.D.,Ravikumar A.P.,Heath G.A.,Englander J.,Cooley D.,Lyon D.,Omara M.,Langt Q.,Brandt A.R.(2021)缩小差距:解释美国石油和天然气生产段甲烷库存的持续估计。自然通讯,12:4715。 https://doi.org/10.1038/s41467-021-25017-4。7。修复M.†,Cooley D.,Thibaud E.(2020)同时进行空间验证的自回归模型。环境,32:e2656。https://doi.org/10.1002/env.2656 8。 Yuen R.,Stoev,S.,Cooley D.(2020)极高价值的分布鲁棒推断。 保险:数学与经济学,92:70-89。 https://doi.org/10.1016/j.insmatheco.2020.03.003 9。 江Y.,Cooley D.,Wehner M.P. (2020)主要成分分析,用于极端和对美国降水的应用。 气候杂志,33(15):6441-6451。 https://doi.org/10.1175/jcli-d-19-0413.1 10。 Cooley D.,Thibaud E.(2019)。 对高维度的依赖性分解。 Biometrika,106:587-604。 doi:10.1093/biomet/asz028。 11。 Hewitt J. †,Fix M.J.†,Hoeting J.A.,Cooley D.S. (2019)。 通过加权的可能性,潜在的空间极端模型提高了回报水平的估计。 jabes; 24:426-443。 doi:10.1007/s13253-019-00356-4 12。 Huang W.K.,Cooley D.S.,Ebert-upho虫,Chen C.,Chatterjee S.(2019)极端依赖的新探索工具:CHI网络和年度极好网络。 jabes; 24:484-501。 doi:10.1007/s13253-019-00356-4 13。 Cooley D.,Thibaud E.,Castillo F.,Wehner M.F. (2019)。 一种非参数方法,用于极端双变量超级概率的隔离,22:373-390; doi:10.1007/s10687-019-00348-0。 14。 Timmermans B.,Wehner M.,Cooley D.,O'Brien T.,Krishnan H.(2018)。 网格降水数据集中极端的一致性。 气候动力学,52:6651-6670。 doi:10.1007/s00382-018-4537-0。 15。https://doi.org/10.1002/env.2656 8。Yuen R.,Stoev,S.,Cooley D.(2020)极高价值的分布鲁棒推断。保险:数学与经济学,92:70-89。 https://doi.org/10.1016/j.insmatheco.2020.03.003 9。江Y.,Cooley D.,Wehner M.P. (2020)主要成分分析,用于极端和对美国降水的应用。 气候杂志,33(15):6441-6451。 https://doi.org/10.1175/jcli-d-19-0413.1 10。 Cooley D.,Thibaud E.(2019)。 对高维度的依赖性分解。 Biometrika,106:587-604。 doi:10.1093/biomet/asz028。 11。 Hewitt J. †,Fix M.J.†,Hoeting J.A.,Cooley D.S. (2019)。 通过加权的可能性,潜在的空间极端模型提高了回报水平的估计。 jabes; 24:426-443。 doi:10.1007/s13253-019-00356-4 12。 Huang W.K.,Cooley D.S.,Ebert-upho虫,Chen C.,Chatterjee S.(2019)极端依赖的新探索工具:CHI网络和年度极好网络。 jabes; 24:484-501。 doi:10.1007/s13253-019-00356-4 13。 Cooley D.,Thibaud E.,Castillo F.,Wehner M.F. (2019)。 一种非参数方法,用于极端双变量超级概率的隔离,22:373-390; doi:10.1007/s10687-019-00348-0。 14。 Timmermans B.,Wehner M.,Cooley D.,O'Brien T.,Krishnan H.(2018)。 网格降水数据集中极端的一致性。 气候动力学,52:6651-6670。 doi:10.1007/s00382-018-4537-0。 15。江Y.,Cooley D.,Wehner M.P.(2020)主要成分分析,用于极端和对美国降水的应用。气候杂志,33(15):6441-6451。 https://doi.org/10.1175/jcli-d-19-0413.1 10。Cooley D.,Thibaud E.(2019)。对高维度的依赖性分解。Biometrika,106:587-604。doi:10.1093/biomet/asz028。11。Hewitt J. †,Fix M.J.†,Hoeting J.A.,Cooley D.S. (2019)。 通过加权的可能性,潜在的空间极端模型提高了回报水平的估计。 jabes; 24:426-443。 doi:10.1007/s13253-019-00356-4 12。 Huang W.K.,Cooley D.S.,Ebert-upho虫,Chen C.,Chatterjee S.(2019)极端依赖的新探索工具:CHI网络和年度极好网络。 jabes; 24:484-501。 doi:10.1007/s13253-019-00356-4 13。 Cooley D.,Thibaud E.,Castillo F.,Wehner M.F. (2019)。 一种非参数方法,用于极端双变量超级概率的隔离,22:373-390; doi:10.1007/s10687-019-00348-0。 14。 Timmermans B.,Wehner M.,Cooley D.,O'Brien T.,Krishnan H.(2018)。 网格降水数据集中极端的一致性。 气候动力学,52:6651-6670。 doi:10.1007/s00382-018-4537-0。 15。Hewitt J.†,Fix M.J.†,Hoeting J.A.,Cooley D.S.(2019)。通过加权的可能性,潜在的空间极端模型提高了回报水平的估计。jabes; 24:426-443。doi:10.1007/s13253-019-00356-4 12。Huang W.K.,Cooley D.S.,Ebert-upho虫,Chen C.,Chatterjee S.(2019)极端依赖的新探索工具:CHI网络和年度极好网络。 jabes; 24:484-501。 doi:10.1007/s13253-019-00356-4 13。 Cooley D.,Thibaud E.,Castillo F.,Wehner M.F. (2019)。 一种非参数方法,用于极端双变量超级概率的隔离,22:373-390; doi:10.1007/s10687-019-00348-0。 14。 Timmermans B.,Wehner M.,Cooley D.,O'Brien T.,Krishnan H.(2018)。 网格降水数据集中极端的一致性。 气候动力学,52:6651-6670。 doi:10.1007/s00382-018-4537-0。 15。Huang W.K.,Cooley D.S.,Ebert-upho虫,Chen C.,Chatterjee S.(2019)极端依赖的新探索工具:CHI网络和年度极好网络。jabes; 24:484-501。doi:10.1007/s13253-019-00356-4 13。Cooley D.,Thibaud E.,Castillo F.,Wehner M.F. (2019)。 一种非参数方法,用于极端双变量超级概率的隔离,22:373-390; doi:10.1007/s10687-019-00348-0。 14。 Timmermans B.,Wehner M.,Cooley D.,O'Brien T.,Krishnan H.(2018)。 网格降水数据集中极端的一致性。 气候动力学,52:6651-6670。 doi:10.1007/s00382-018-4537-0。 15。Cooley D.,Thibaud E.,Castillo F.,Wehner M.F.(2019)。一种非参数方法,用于极端双变量超级概率的隔离,22:373-390; doi:10.1007/s10687-019-00348-0。14。Timmermans B.,Wehner M.,Cooley D.,O'Brien T.,Krishnan H.(2018)。网格降水数据集中极端的一致性。气候动力学,52:6651-6670。doi:10.1007/s00382-018-4537-0。15。修复M.†,Cooley D.,Sain S.R.,Tebaldi C.(2018)。在RCP8.5和RCP4.5下,美国降水极端的比较与模式缩放的应用。气候变化,146(3),335-347。doi:10.1007/s10584-016-1656-7。
Julien Bryois#1,Nathan G. Skene#2,3,4,5,Thomas Folkmann Hansen 6,7,8 9,20,Lars Alfredsson 21,Tetsuya Ando 22,Ole Andreasen 23,Ole Andreasen 23,Jessica Baker,Jessica Baker 24,25,24,25 Uehren 35,Cynthia Buklik 1,9,16,Roland Bhardt Man 14,15,Rock 39,Philippe Courtet 40,Steven Crawford 34,Scott Crows 41,Oliver Davis 42,43 CE Desocio 47,Dimitris Dikeos 49 Esko 58,59,Xavier Estville 53,54,55,60,Angela Favaro 46,Fernando Ferndez-Aranda 61,62,Manfred Ficher 63,64,ManuelFöcker5 ,Fragiskos Gonidakis 73,Philip Gondoth 31,75,Monica Gratacos Mayora 53,54,55,Jakob Grove 76,77,78,7 0,81 0,81,Katherine Halmi 82,Ken Hanscom,Ken Hanscom,kentine Hatzikotoulas 32,Johannes Hebebrand 65,Sietske Hers hers sherp hers stepl 7,约翰·霍德(L. 98,
Edwin G. Nourse 主席 1946 年 8 月 9 日 1949 年 11 月 1 日 Leon H. Keyserling 副主席 1946 年 8 月 9 日 代理主席 1949 年 11 月 2 日 主席 1950 年 5 月 10 日 1953 年 1 月 20 日 John D. Clark 成员 1946 年 8 月 9 日 副主席 1950 年 5 月 10 日 1953 年 2 月 11 日 Roy Blough 成员 1950 年 6 月 29 日 1952 年 8 月 20 日 Robert C. Turner 成员 1952 年 9 月 8 日 1953 年 1 月 20 日 Arthur F. Burns 主席 1953 年 3 月 19 日 1956 年 12 月 1 日 Neil H. Jacoby 成员 1953 年 9 月 15 日 1955 年 2 月 9 日 Walter W. Stewart 成员 1953 年 12 月 2 日 1955 年 4 月 29 日Saulnier 成员 1955 年 4 月 4 日 主席 1956 年 12 月 3 日 1961 年 1 月 20 日 Joseph S. Davis 成员 1955 年 5 月 2 日 1958 年 10 月 31 日 Paul W. McCracken 成员 1956 年 12 月 3 日 1959 年 1 月 31 日 Karl Brandt 成员 1958 年 11 月 1 日 1961 年 1 月 20 日 Henry C. Wallich 成员 1959 年 5 月 7 日 1961 年 1 月 20 日 Walter W. Heller 主席 1961 年 1 月 29 日 1964 年 11 月 15 日 James Tobin 成员 1961 年 1 月 29 日 1962 年 7 月 31 日 Kermit Gordon 成员 1961 年 1 月 29 日 1962 年 12 月 27 日 Gardner Ackley 成员 1962 年 8 月 3 日 主席 1964 年 11 月 16 日 1968 年 2 月 15 日P. Lewis 成员 1963 年 5 月 17 日 1964 年 8 月 31 日 Otto Eckstein 成员 1964 年 9 月 2 日 1966 年 2 月 1 日 Arthur M. Okun 成员 1964 年 11 月 16 日 主席 1968 年 2 月 15 日 1969 年 1 月 20 日 James S. Duesenberry 成员 1966 年 2 月 2 日 1968 年 6 月 30 日 Merton J. Peck 成员 1968 年 2 月 15 日 1969 年 1 月 20 日 Warren L. Smith 成员 1968 年 7 月 1 日 1969 年 1 月 20 日 Paul W. McCracken 主席 1969 年 2 月 4 日 1971 年 12 月 31 日 Hendrik S. Houthakker 成员 1969 年 2 月 4 日 1971 年 7 月 15 日 Herbert Stein 成员 1969 年 2 月 4 日 主席 1972 年 1 月 1 日31, 1974 Ezra Solomon 会员 1971年9月9日 1973年3月26日 Marina vN Whitman 会员 1972年3月13日 1973年8月15日 Gary L. Seevers 会员 1973年7月23日 1975年4月15日 William J. Fellner 会员 1973年10月31日 1975年2月25日艾伦·格林斯潘 主席 1974年9月4日 1977年1月20日 保罗·W·麦卡沃伊 成员 1975年6月13日 1976年11月15日 伯顿·G·马尔基尔 成员 1975年7月22日 1977年1月20日 查尔斯·舒尔茨 主席 1977年1月22日 1981年1月20日 威廉·D·诺德豪斯 成员 3月1977 年 2 月 4 日 18 日1979 Lyle E. Gramley 成员 1977 年 3 月 18 日 1980 年 5 月 27 日 George C. Eads 成员 1979 年 6 月 6 日 1981 年 1 月 20 日 Stephen M. Goldfeld 成员 1980 年 8 月 20 日 1981 年 1 月 20 日 Murray L. Weidenbaum 主席 1981 年 2 月 27 日 1982 年 8 月 25 日 William A. Niskanen 成员 1981 年 6 月 12 日 1985 年 3 月 30 日 Jerry L. Jordan 成员 1981 年 7 月 14 日 1982 年 7 月 31 日 Martin Feldstein 主席 1982 年 10 月 14 日 1984 年 7 月 10 日 William Poole 成员 1982 年 12 月 10 日 1985 年 1 月 20 日 Beryl W. Sprinkel 主席 1985 年 4 月 18 日 1989 年 1 月 20 日
复合材料的历史可以追溯到古代文明,人们首先将不同的材料组合在一起以创造强大耐用的产品。在公元前1500年,埃及人使用泥土和稻草的混合物来建造结构,而蒙古人则在公元1200年开发了第一个复合弓。现代复合材料始于1900年代初期塑料的发展,该塑料的表现优于源自动植物的天然树脂。但是,仅塑料不足以为某些应用提供必要的强度。在1935年,欧文斯·康宁(Owens Corning)引入了玻璃纤维,该玻璃纤维彻底改变了纤维增强聚合物(FRP)行业。在复合材料中使用玻璃纤维导致了重大进步,包括开发可用于遮盖电子雷达设备的透明材料。在第二次世界大战期间,对轻质和强大材料的需求导致了复合材料行业的快速增长。第一个复合商用船船体于1946年推出,诸如Pultrusion之类的创新使得能够生产出可靠的强玻璃纤维增强产品。今天,复合材料被广泛用于各种行业,包括建筑,运动器材和防弹衣。凯夫拉尔和碳纤维等芳香纤维的开发进一步推进了行业。风力涡轮机叶片已成为增长的重点,随着材料的不断改进以提高效率和降低成本。由可再生能源技术的进步驱动,复合材料行业继续发展。复合材料的演变跨越了数千年,埃及人和美索不达米亚人等古老的文明利用泥土和稻草的混合物来建造强大的建筑物。稻草在生产陶器和船只中仍然是至关重要的组成部分,而后来蒙古人使用木材,骨头和动物胶发明了第一个复合弓。现代复合材料始于20世纪初期塑料的发展,该塑料的表现优于源自动植物的天然树脂。但是,仅单个塑料不足以用于某些结构应用,从而导致欧文斯·康宁(Owens Corning)在1935年引入玻璃纤维。这标志着纤维增强聚合物(FRP)行业的开始,此后一直由战时需求驱动,包括开发用于军用飞机和雷达屏蔽的复合材料。第二次世界大战的结束导致了对复合材料的需求激增,像勃兰特·戈德沃斯(Brandt Goldsworthy)这样的创新者介绍了新的制造工艺和产品,包括玻璃纤维冲浪板和纯种技术。今天,复合材料继续在包括航空航天,汽车和运动器材在内的各个行业中发挥着至关重要的作用,并具有材料科学和技术方面的进步,从而创造了更轻,更强和更广泛的结构。复合材料近来变得越来越突出,在各种应用中逐渐取代钢组件。复合材料行业仍在不断发展,越来越关注可再生能源。风力涡轮机叶片,尤其是推动尺寸限制,需要高级复合材料。研究继续探索纳米材料和基于生物的聚合物等新领域。这些混合材料结合了两种或多种不同的材料,其特征是它们的基质和增强纤维。复合材料的概念可以追溯到古代文明,例如埃及人和美索不达米亚人,他们使用泥土和稻草来建立更强的结构。后来,蒙古人使用木材,骨头和动物胶的组合发明了第一个复合弓。现代时代始于1900年代初期塑料的发展。新的合成材料改善了自然树脂性能,而康宁玻璃的意外发现玻璃纤维导致1936年的“玻璃纤维”注册。在第二次世界大战期间,聚酯树脂从德国被盗,可以生产玻璃纤维复合材料。玻璃纤维与聚酯纤维相结合,可产生令人难以置信的坚固而轻巧的结构。研究揭示了其他好处,包括射频信号的透明度。第二次世界大战后,战争行业以外的市场出现了,例如海洋市场,它在1946年看到了第一批商业复合船船体,以及汽车市场,随着1953年的雪佛兰Corvette的推出。
