农杆菌介导的转化是一种将外源基因转化为植物的广泛使用的方法。烟草(Nicotiana tabacum L.)是遗传转化中的模型植物。下面描述了将烟草用作模型植物的几个原因如下:(1)烟草叶片很容易被器官发生再生(Constantin等,1977)。(2)当植物需要从实验室转移到温室状况时,烟草植物很容易采用环境的变化(Chandra等,2010; Jube&Borthakur,2007)。良好采用环境会提高再生率。(3)烟草植物的生物量产量很高,因此可以轻松生产重组蛋白来用于分子种植(Twyman等,2003)。如今,烟草的分子遗传学和基因组图进行了充分的研究,几乎完成了(Jube&Borthakur,2007)。烟草中遗传转化的研究和应用为其他植物的转化系统提供了前景和参考。
背景:顶花基因1(TFL1)属于磷脂酰乙醇胺结合蛋白(PEBP)家族,在高等植物花分生组织身份决定及开花时间调控中起重要作用。结果:在油菜基因组中鉴定出5个BnaTFL1基因拷贝。系统发育分析表明,5个BnaTFL1基因拷贝与祖先种芜菁和甘蓝中相应的同源拷贝聚集在一起。BnaTFL1的表达局限于花芽、花、种子、角果和茎组织中,并表现出不同的表达谱。利用CRISPR/Cas9技术产生的BnaC03.TFL1敲除突变体表现出早花表型,而其他基因拷贝的敲除突变体开花时间与野生型相似。此外,BnaTFL1基因单个拷贝的敲除突变体表现出了植株结构的改变,BnaTFL1突变体的株高、分枝起始高度、分枝数、角果数、每角果种子数和主花序上的角果数均显著减少。
全球变暖、干旱、洪水和其他极端事件等气候变化的影响对全球作物生产构成了严峻挑战。油菜对油料产业的贡献使其成为国际贸易和农业经济的重要组成部分。这种作物遭受的多种非生物胁迫越来越多,导致农业经济损失,因此,让油菜作物在同时面临多种非生物胁迫时具有生存和维持产量的能力至关重要。为了更好地了解压力感知机制,需要分析多种压力响应基因和其他调控元件(如非编码 RNA)的调控途径。然而,我们对这些途径及其在油菜中的相互作用的理解还远未完成。本综述概述了目前对压力响应基因及其在赋予油菜多种压力耐受性方面的作用的了解。通过组学数据挖掘分析网络串扰现在使得揭示植物压力感知和信号传导所需的潜在复杂性成为可能。本文还讨论了新型生物技术方法,例如无转基因基因组编辑和利用纳米粒子作为基因传递工具。这些方法有助于为开发具有更少监管限制的、能够抵御气候变化的油菜品种提供解决方案。本文还强调了合成生物学通过微调应激调节元件来设计和修改网络的潜在能力,以适应植物对应激的适应。
Wipro Limited (NYSE: WIT, BSE: 507685, NSE: WIPRO) 是一家全球领先的信息技术、咨询和业务流程服务公司。我们利用认知计算、超自动化、机器人、云、分析和新兴技术的力量,帮助我们的客户适应数字世界并取得成功。我们是一家以其全面的服务组合、对可持续发展的坚定承诺和良好的企业公民意识而享誉全球的公司,拥有超过 175,000 名敬业的员工,为六大洲的客户提供服务。我们共同探索创意,将点点滴滴串联起来,打造一个更美好、更大胆的新未来。
回应了孟山都公司(以下称为孟山都)的请愿书11-188-01p,美国农业部(USDA)的动物和植物健康检查服务(Aphis)(APHIS)(USDA)已确定88302 CANOLA和OPENITY不太可能被视为pose pose pose soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph,在《联邦法规守则》第7章中,第340部分(7 CFR第340部分)。由于Aphis确定了88302 Canola不太可能构成植物害虫风险,因此Aphis会批准对非管制状态的请愿书88302 CANOLA。因此,Aphis批准的许可证或已确认的通知,这些通知将不再需要这些法规下的环境释放,州际运动或进口,而Mon 88302 Canola及其后代则不再需要。在7 CFR第319部分的Aphis外国隔离通知和第7 CFR部分的《联邦种子法》条例中,仍将遵守Aphis外国隔离通知。