摘要背景。开发合理的联合疗法是克服胶质母细胞瘤 (GBM) 固有治疗耐药性的关键。我们旨在通过用溴结构域和额外末端基序 (BET) 蛋白抑制剂扰乱 GBM 细胞来发现新的可用药物靶点,以揭示可能对第二种药物敏感的癌症相关弱点。BET 蛋白是表观遗传调节剂,与癌症中的原癌基因过表达有关。方法。用 BET 抑制剂 (BETi) JQ1 在 48 小时内处理 GBM 衍生的球线,然后进行 RNA 测序。通过染色质免疫沉淀后测序 (ChIP-seq) 研究了四种染色质标记。在体外和原位异种移植中对感兴趣的特征进行了功能验证。评估了联合疗法的协同作用。结果。 JQ1 显著调节的癌症相关通路包括干扰素 α (IFN- α ) 反应基因和对组蛋白去乙酰化酶抑制剂 (HDACi) 的反应特征。IFN 特征让人联想到由 CD274 (PD-L1) 组成的 GBM 衍生的 IFN 特征。功能通路分析表明,JQ1 直接作用于 IFN 反应基因的转录水平,而不是通过典型的 JAK/STAT 通路。这与 JQ1 调节的表达以及 BRD4 和 Pol II 在 IFN 特征基因处的占有率一致,支持直接的机制相互作用。最后,我们表明 HDACi 与 JQ1 相结合可协同降低 GS 系的细胞活力。结论。我们的方法确定了 BETi 诱导的癌症相关通路中的脆弱性,可能适合协同组合疗法,例如与 HDACi 结合。 BETi 对 GBM 细胞中 IFN 反应基因(包括 CD274)的直接抑制作用表明肿瘤免疫格局的调节,值得进一步研究。
引言小细胞肺癌(SCLC)是一种顽固性恶性肿瘤,治疗方案有限(1)。由于近20年的治疗进展缺乏治疗的进展,其2年生存没有改善(2)。最近批准了几种新的治疗剂,包括免疫检查点抑制剂和lurbinectedin,但只有一部分患者会受益(3)。因此,不需要开发SCLC的新疗法。SCLC的潜在治疗候选者是溴结构域和末端结构域抑制剂(BETIS),它们靶向BET家族蛋白,即BRD2,BRD3,BRD4和BRDT。BET家族蛋白的主要功能是基因转录调节。betis与BET家族蛋白的溴结构域结合,并使它们与活性染色质分离,从而导致基因转录的抑制。由于贝蒂斯仅降低基因的一部分,尤其是与细胞谱系和驱动癌基因相关的基因的表达(4),因此对将此类药物应用于癌症治疗而引起了很大的兴趣。先前的研究报告说,小鼠SCLC非常容易受到贝蒂斯(5)的影响(5),但是人类SCLC系具有更广泛的敏感性(6)。最近我们发现,由于neu-rod1反式激活对BET家族蛋白的依赖,SCLC表达神经1(SCLC-N亚型)的子集特别容易受到BETIS的影响(7)。先前的几项研究报告说,针对PARP,HDAC6或BCL2的抑制剂在SCLC中与BETIS协同作用(8-11)。但是,然而,Beti在体内SCLC-N亚型肿瘤中仅具有适度的抗肿瘤活性(7),这需要一种组合策略来增强其在SCLC和SCLC的其他分子亚型中的抗抗效应。
神经纤维瘤病1型(NF1)患者会出现一系列良性和恶性肿瘤,其中恶性外周神经鞘肿瘤(MPNST)和高级神经胶质瘤(HGG)的预后令人沮丧。NF1患者中约有15–20%发生脑肿瘤,其中三分之一出现在视觉途径之外。这些非光途径胶质瘤更有可能发展为恶性肿瘤,尤其是在成年人中。尽管频率低,但高级神经胶质瘤对NF1患者的发病率有不良影响。尚未在NF1-Associ-ated HGG上进行体外药物组合筛查,从而阻碍了我们开发知情临床试验的能力。在这里,我们介绍了第一个体外药物组合筛选(单独使用21种化合物或与MEK或PI3K抑制剂结合使用),在唯一的人NF1患者衍生的HGG细胞系上,以及源自NF1-P53基因工程模型的三个小鼠神经胶质瘤细胞系上,散发出HGG。这些小鼠神经胶质瘤细胞系从未暴露于血清,随着球体的生长和与少突胶质细胞前体细胞(OPC)谱系相一致的表达标记。重要的是,即使HGG的原始单元仍然难以捉摸,它们也被认为是由OPC谱系引起的。我们在3D球体生长测定中评估了三种鼠神经胶质瘤细胞系的药物敏感性,这更准确地反映了体内药物敏感性。令人兴奋的是,我们确定了针对HDACS,BRD4,CHEK1,BMI-1,CDK1/2/5/9的六种化合物,以及在我们NF1相关的HGG中有效诱导细胞死亡的蛋白酶体。此外,这些抑制剂中的一些与MEK或PI3K抑制剂协同起作用。这项研究构成了对有希望的目标进行进一步临时评估的基础,最终希望将其转化为诊所。
靶向蛋白质降解 (TPD) 代表了一种有效的化学生物学范例,它利用细胞降解机制以药理学方式消除特定的目标蛋白质。尽管已发现多种 E3 连接酶可促进 TPD,但仍迫切需要使可用于此类应用的 E3 连接酶库多样化。这种扩展将扩大潜在蛋白质靶标的范围,以适应具有不同亚细胞定位和表达模式的靶标。在本研究中,我们描述了一种基于 CRISPR 的转录激活筛选,重点是人类 E3 连接酶,目的是识别可以促进异双功能化合物介导的靶标降解的 E3 连接酶。这种方法使我们能够解决在缺乏所需 E3 连接酶或所需 E3 连接酶水平较低的特定细胞系中研究候选降解分子的局限性。通过这种方法,我们确定了一种候选的蛋白水解靶向嵌合体 (PROTAC),22-SLF,当 FBXO22 基因转录被激活时,它会诱导 FKBP12 的降解。22-SLF 以 FBXO22 依赖的方式在多种癌细胞系中诱导内源性 FKBP12 的降解。后续的机制研究表明,22-SLF 与 FBXO22 中的 C227 和/或 C228 相互作用以实现目标降解。最后,我们通过有效降解另一种内源性蛋白质 BRD4 证明了基于 FBXO22 的 PROTAC 的多功能性。这项研究揭示了 FBXO22 是一种 E3 连接酶,能够通过亲电 PROTAC 支持配体诱导的蛋白质降解。我们开发的平台可以通过识别促进小分子诱导或内源性蛋白质降解的 E3 连接酶来轻松应用于阐明蛋白质降解途径。
Hedgehog (HH) 通路在胚胎发育、组织稳态和致癌作用中起着至关重要的作用 [1,2]。HH 配体通过与受体 patched 1 同源物 (PTCH1) 结合来激活信号转导。在没有 HH 配体的情况下,PTCH1 会阻止 Smoothened (SMO) 将信号传递给下游胶质瘤相关致癌基因同源物 (GLI) 转录因子。HH 配体与 PTCH1 结合,解除 PTCH1 对 SMO 的抑制,使 SMO 向下游效应物 GLI 发出信号,GLI 通过特定的基因组 DNA 序列 (TGGGTGGTC) 激活靶基因 [3,4]。通过 HH–PTCH1–SMO 轴激活 GLI 蛋白被视为典型的 HH 信号通路。除经典途径外,一些分子可以绕过配体-受体信号轴来激活 GLI,这些类型的调节被视为非经典 HH 信号。非经典 HH 信号存在于恶性疾病中。据报道,KRAS 信号 [ 5 , 6 ]、转化生长因子 β (TGF β ) [ 7 ]、AKT [ 8 ]、蛋白激酶 C (PKC) [ 9 ] 和 SOX2-溴结构域蛋白 4 (BRD4) [ 10 ] 通过非经典途径调节 HH 信号。化疗广泛应用于癌症治疗,并显著改善患者的预后。然而,并非所有患者都能从中受益。化疗耐药成为癌症治疗的一大障碍,因为内在耐药发生在治疗开始时甚至治疗之前,或在治疗初次起效后发生获得性耐药,导致复发[11,12]。铂类、5-氟尿嘧啶 (5-FU) 和吉西他滨是胃癌、结直肠癌和胰腺癌化疗中最常用的药物,其耐药机制已被研究。化疗耐药的机制包括癌症干细胞 (CSC)、肿瘤微环境和 ATP 结合盒 (ABC) 转运蛋白家族蛋白[13-15]。我们小组研究了胃肠道癌症的耐药性,发现 HH 通路是导致耐药性的原因之一。本综述重点介绍 HH 通路与胃肠道癌症耐药性之间关系的最新进展,并研究可能克服 HH 介导耐药性的新药物和策略。
