摘要:精确的基因编辑是 - 或很快就会用于多种疾病的临床用途,并且正在开发更多应用。由单个诱导RNA(SGRNA)导演的可编程核酸酶CAS9可以在基因组DNA的靶位点中引入双链断裂(DSB),这构成了使用这种新技术的基因编辑的初始步骤。在哺乳动物中,两种途径占主导地位的DSB修复 - 非同源末端连接(NHEJ)和同源指导的修复(HDR) - 基因编辑的结果主要取决于这两个修复途径之间的选择。尽管HDR以其高度有吸引力,但在生物学环境中,修复途径的选择是有偏见的。哺乳动物细胞优先通过多种机制利用NHEJ:NHEJ在整个细胞周期中都活跃,而HDR仅限于S / G2阶段; NHEJ比HDR快。 NHEJ抑制了HDR过程。这表明可以通过操纵细胞修复途径的选择来实现对编程DNA病变结果的明确控制。在这篇综述中,我们总结了DSB修复途径,基于DNA切除的选择选择的机制,并在研究策略中取得了进展,该策略基于操纵修复途径的选择以增加哺乳动物细胞的HDR频率,从而有利于Cas9介导的HDR。还讨论了提高HDR效率的其余问题。本评论应促进CRISPR / CAS9技术的开发,以实现更精确的基因编辑。
。CC-BY-NC-ND 4.0 国际许可证下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 9 月 9 日发布。;https://doi.org/10.1101/2024.09.09.612111 doi:bioRxiv 预印本
1国家职业健康研究所,工作心理学研究小组,奥斯陆,奥斯陆,挪威2号职业与环境医学司,公共卫生科学系,卡罗林斯卡研究所,卡罗林斯卡研究所,瑞典,瑞典,瑞典3,职业和环境医学司,伦敦大学,伦敦伦敦市伦敦市伦敦市,丹麦4号,伦敦康涅狄格州伦敦市,第5次,丹麦克里克,伦德大学4号。南丹麦大学,丹麦的丹麦大学,丹麦6号挪威生物经济研究所,ÅS,挪威,挪威7号国家工作环境研究中心,肌肉骨骼疾病和身体工作量,丹麦哥本哈根,丹麦8号,工业经济学和技术管理系8 Trondheim,挪威
摘要:辐射诱导的旁观者效应(RIBE)描述了在受辐射的细胞附近的非靶向细胞中发生的生物事件。已经使用了各种实验程序来研究肋骨。有趣的是,大多数微辐照实验都是用α颗粒进行的,而大多数中型转移都是用X射线进行的。具有高功能,同步X射线代表了一个真正的机会,可以通过应用相同的辐射类型的这两种方法来学习RIBE。通过中等转移方法在人类纤维细胞中诱导的肋骨导致辐射后10分钟至4 h的DNA双链断裂(DSB)产生。这种肋骨被发现取决于剂量和供体细胞的数量。用微辐照方法诱导的肋骨产生了同样的时间出现的DSB。含有高浓度的磷酸盐的培养基可抑制肋骨,而富含钙的培养基则增加了磷酸盐。 在同步X射线,培养基转移,微辐照和6 MeV光子照射下模拟标准放射疗法的6 MeV光子照射之后,评估了RIB对生物剂量的贡献:RIBE分别代表小于1%,约5%,大约5%,约为初始剂量的20%。 然而,根据其放射性敏感性状态及其响应辐射释放Ca 2+离子的能力,RIB可能会在周围组织中产生有益的或其他有害的作用。含有高浓度的磷酸盐的培养基可抑制肋骨,而富含钙的培养基则增加了磷酸盐。在同步X射线,培养基转移,微辐照和6 MeV光子照射下模拟标准放射疗法的6 MeV光子照射之后,评估了RIB对生物剂量的贡献:RIBE分别代表小于1%,约5%,大约5%,约为初始剂量的20%。然而,根据其放射性敏感性状态及其响应辐射释放Ca 2+离子的能力,RIB可能会在周围组织中产生有益的或其他有害的作用。
摘要:DNA双链断裂(DSB)是有害的DNA病变,如果无法正确修复,这会对基因组稳定性产生灾难性后果。dsb可以通过非同源末端连接(NHEJ)或同源重组(HR)来修复。这两种途径之间的选择取决于哪种蛋白质结合到DSB末端以及如何调节其作用。nhej启动了KU复合物与DNA末端的结合,而HR是由5'触发的DNA链的核解度降解引发的,这需要几种DNA核酸酶/解旋酶并产生单链DNA悬垂。dsb修复发生在精确组织的染色质环境中,其中DNA围绕组蛋白八聚体形成核小体。核 - 躯体对DNA末端加工和修复机械施加了障碍。修改DSB周围的染色质组织可以通过去除整个核小体的去除,这要么通过染色质重塑因子的作用,或者是通过染色质重塑因子的作用,或者通过染色体后的转换修改来允许进行正确的DSB修复,从而可以增加染色质的功能,从而增加修复enzymes对DNA的可及性。在这里,我们回顾了酵母酿酒酵母中DSB周围发生的翻译后修饰及其在DSB修复中的作用,并特别注意DSB修复途径选择。
Greenko 的投资者包括新加坡和阿布扎比的主权基金。本月,该公司宣布与比利时的世界领先高容量碱性电解器制造商 John Cockerill 合作,共同开发印度绿色氢电解器的市场计划,从而增强了其能源转型资质。此次合作将使印度在未来一年内大规模生产电解器,从而实现成本最低的绿色氢的生产,进而支持印度更快地采用绿色分子相关生态系统,加速全球企业和国家正在进行的能源转型。
突破性的标志着现场工程在125,750平方米的未来氢氧化锂转换器上的正式开始。Rock Tech最近根据《联邦排放控制法》获得了第一份部分许可,并计划在测试堆积和地面准备方面进行进展。Guben Converter应在2025年中开始进行调试,并将在2026年生产合格的电池级氢氧化锂。Guben Converter是加拿大 - 德国公司打算在欧洲和北美建造的五个转换器中的第一个。关于Rock Tech Rock Tech是一家清洁技术公司,该公司在加拿大和德国的运营旨在生产用于电池电池的氢氧化锂。该公司计划在其客户的门口建造锂转换器,以确保供应链透明度和及时交付,从该公司拟议的氢氧化氢锂商人转换器和德国古本的炼油厂设施开始。为了缩小清洁出行故事中最紧迫的差距,Rock Tech聚集了该行业中最强大的团队之一。该公司采用了严格的环境,社会和治理标准,并正在开发旨在进一步提高效率和可持续性的专有炼油过程。Rock Tech计划从其全资拥有的佐治亚州Spodumene湖项目中采购原材料,位于加拿大安大略省的雷湾矿业区,并从其他负责任的生产地雷中采购。在未来几年中,该公司还希望还从废弃的电池中获取原材料。有关前瞻性信息的警告说明岩石技术的目标:创建一个闭环锂生产系统。www.rocktechlithium.com有关更多信息AndréMandel,电话:+49(0)2102 89 41 116;或电子邮件:amandel@rocktechlithium.com,Rock Tech Lithium Inc.; 777 Hornby Street, Suite 600, Vancouver, B.C., V6Z 1S4 Photo and rendering material, as well as the release of the Brandenburg Government can be found here: https://bit.ly/GroundbreakingGuben Neither the TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.
S3图 用VPA,LI2CO3和Tranilast处理的处理可减少DNA双链断裂,如! H2AX,但不恢复HMGB-1水平。 (a)非播(ns),复制性衰老的未处理(RS UNTR)和复制性衰老处理(RS处理)细胞的免疫荧光染色(蓝色)和! H2AX(绿色)以量化DNA双链断裂。 绿色! H2AX与DAPI相对于总细胞计数进行了量化。 (b)非播(ns),复制性衰老的未处理(RS UNTR)和复制性衰老处理(RS处理)细胞的免疫荧光染色(蓝色)和HMGB-1(绿色)。 DAPI与总细胞计数相关的HMGB-1阳性细胞数量。S3图用VPA,LI2CO3和Tranilast处理的处理可减少DNA双链断裂,如!H2AX,但不恢复HMGB-1水平。(a)非播(ns),复制性衰老的未处理(RS UNTR)和复制性衰老处理(RS处理)细胞的免疫荧光染色(蓝色)和!H2AX(绿色)以量化DNA双链断裂。绿色!H2AX与DAPI相对于总细胞计数进行了量化。(b)非播(ns),复制性衰老的未处理(RS UNTR)和复制性衰老处理(RS处理)细胞的免疫荧光染色(蓝色)和HMGB-1(绿色)。DAPI与总细胞计数相关的HMGB-1阳性细胞数量。
免疫疗法的基本问题是大多数类型的肿瘤中缺乏肿瘤特异性抗原,从而导致免疫耐受性。对于大约85%的微卫星稳定患者(MSS)结直肠癌(CRC),缺乏肿瘤新抗原会导致免疫疗法功效不佳。我们先前的研究表明,非蛋白酶脯氨酸(PRO)类似物氮氮杂氨酸-2-羧酸(AZE)的掺杂可能会产生突变的蛋白质,从而显着增强肿瘤细胞抗原性和抗肿瘤免疫反应。方法:为了激活更特异性的抗肿瘤免疫反应,副作用较少,我们利用了非蛋白质生成丝氨酸(SER)类似物β-N-甲基氨基氨基 - L-丙氨酸(BMAA),可以通过适当的速率将其用作Seryl TRNA合成酶将其掺入蛋白质中。BMAA掺入的新抗原,并在鼠CRC模型中选择了具有高抗原性的癌细胞富集肽,以制备基于BMAA的自组装纳米颗粒(SAN)。单细胞测序,以分析由SAN疫苗接种诱导的免疫反应,并结合Toll样受体7激动剂(TLRA)辅助和BMAA治疗。结果:San-TlrA接种BMAA治疗诱导了抗肿瘤免疫微环境。这种组合刺激了特定CD8 + T细胞的产生和靶向BMAA的IgG衰老的Neopitopes,最终促进了CRC鼠模型中的免疫激活,抑制肿瘤和延长生存率。这种方法为CRC免疫疗法提供了新的途径。此外,BMAA与SAN疫苗相结合,显着增强了免疫检查点抑制剂抗PD-1抗体的功效。结论:我们的发现提供了一种有前途的策略,用于使用BMAA人为地引入新抗原,这可以破坏免疫耐受性而不会破坏全身免疫平衡。