Deadlin e fo r申请的提交是2024年11月15日。如果此日期之后仍然可用的地方,则申请将保持开放,直到2024年12月15日仅适用于不申请财政支持并且不需要签证的候选人。候选人的申请要求授权参加该课程。本课程由欧洲联盟资助,因此没有收取费用的重新征收but parti cipants t c c c c c c c cipant to n of他们的旅行和住宿费用。2024年11月15日。如果此日期之后仍然可用的地方,则申请将保持开放,直到2024年12月15日仅适用于不申请财政支持并且不需要签证的候选人。要求授权参加该课程的候选人的申请可以临时接受。本课程由欧盟资助,因此没有注册费,但参与者必须支付自己的旅行和住宿费用。
摘要:西兰花(Brassica Oleracea L. var。Italica)是全球最重要的蔬菜作物之一。由于维生素,花青素,矿物质,纤维,二级代谢产物和其他营养素的丰富性,对西兰花的市场需求仍在增加。著名的二级代谢产物,葡萄糖苷酸盐,磺胺素和硒对癌症具有保护作用。已经在造成重要特征的精细映射和克隆基因中取得了显着进步。这一进展为西兰花育种中标记辅助选择(MAS)的选择奠定了基础。由发达的农杆菌在西兰花中介导的植物的遗传工程有助于提高质量。后期的生活;葡萄糖苷和磺胺含量;以及对昆虫,病原体和非生物胁迫的抵抗力。在这里,我们回顾了西兰花的遗传学和分子育种的最新进展。也讨论了改善西兰花的未来观点。
可持续的粮食生产系统在应对粮食安全和环境可持续性的全球挑战方面拥有巨大的希望。该研究主题围绕着包含速度育种技术,垂直水培和数据驱动的智能传感器应用的食品系统。速度育种技术可以快速生成新的植物品种,以所需的特征加速作物发展,例如耐药性,耐旱性,高营养价值和高生产率。这些技术通过先进的遗传学,人工照明和受控环境实现,可以在一年内生长和收获多代植物,超过典型的一到两代基于传统的基于田间的繁殖。通过使用分子标记来分析特定的农作物基因组,育种者可以识别和表征遗传变异。这些知识有助于选择理想的性状,例如害虫或抗病性和提高产量。标记辅助选择(MAS)和基因组选择(GS)是开创性的方法,可提高性状选择的效率和准确性。MAS在繁殖过程的早期就确定了理想的特征,而GS则可以预测植物在生长前的植物性能,并加速育种。这些技术具有显着改善的繁殖效率,可以在更短的时间内开发新品种和品种。11篇文章发表在该研究主题中,由不同学科的专家撰写。第一项研究是Choi等人的。Tetrault等人的提交。使用富含营养的水代替土壤的垂直水培法,可以使每单位土地,有效的资源利用和全年生产能够更高的收益率,而数据驱动的智能传感器可以优化生长条件并自动化营养递送和收获等过程。通过控制光周期和光质量来开发胡椒(辣椒辣椒)的速度育种方案。作者透露,辣椒植物中EPP和FR Light的综合影响会影响流动基因的表达,从而有价值地了解速度育种系统通过减少生成时间加快遗传研究的潜力。是一篇假设和理论文章,它定义了再循环水产养殖系统(RAS)与水培种植系统(HCS)的整合到具有共享水处理单元的单个系统中。
N. K. Bhute 1,R.A。 Bachkar 1和S. S. Kalhapure 1 1棉花改善项目,圣雄菲勒·克里希纳·维迪亚佩斯,马哈拉施特拉邦413722, div>
1个农艺学院,荷兰农业大学,长沙410128,中国; adnanbreeder@yahoo.com(A.R.); jhd20210218@stu.hunau.edu.cn(H.J.); hpl888@stu.hunau.edu.cn(P.H.); azlHh@stu.hunau.edu.cn(l.z.); mys9204@stu.hunau.edu.cn(y.m。); xhcsoldier@163.com(H.X.)2 Khwaja Fareed工程与信息技术大学农业工程系,巴基斯坦Rahim Yar Khan 62400; basharat2018@yahoo.com 3 Al-jumum大学学院生物学系,乌姆·库拉大学,麦加21955,沙特阿拉伯; shqari@uqu.edu.sa 4江西农业大学生态科学研究中心,中国330045; muhassanuaf@gmail.com 5工程研究中心园艺作物的种质创新和新品种育种,荷兰省植物生物学的主要实验室,荷兰教学院,荷兰农业大学,荷兰农业大学,中国长沙410128,中国; rizwan.phyto@outlook.com *通信:ibfcjyc@vip.sina.com2 Khwaja Fareed工程与信息技术大学农业工程系,巴基斯坦Rahim Yar Khan 62400; basharat2018@yahoo.com 3 Al-jumum大学学院生物学系,乌姆·库拉大学,麦加21955,沙特阿拉伯; shqari@uqu.edu.sa 4江西农业大学生态科学研究中心,中国330045; muhassanuaf@gmail.com 5工程研究中心园艺作物的种质创新和新品种育种,荷兰省植物生物学的主要实验室,荷兰教学院,荷兰农业大学,荷兰农业大学,中国长沙410128,中国; rizwan.phyto@outlook.com *通信:ibfcjyc@vip.sina.com
水稻是世界上种植最广泛、最重要的主粮作物之一。随着世界人口的增加,水稻产量增长速度放缓,导致产量无法满足日益增长的人类消费者的需求。据预测,到 2050 年世界人口预计将达到 97 亿,全球粮食产量可能需要增长 70% 以上才能满足世界粮食需求 [1]。除了气候变化之外,干旱、高温等频繁发生的灾害也威胁着水稻的产量和品质;为了解决这些问题,必须采用快速有效的遗传改良策略。近年来,水稻基因组学的进展对于水稻遗传改良技术和方法的进步至关重要。基因组学包括结构基因组学、功能基因组学、表观遗传学和比较基因组学 [2,3]。利用基因组信息可以帮助育种者精确定位关键基因模块,分析基本性状的潜在机制,并为遗传改良提供指导 [4,5]。上个世纪,水稻基因组学研究取得了长足进步。1998 年,水稻基因组研究计划进入基因组测序的新阶段,为揭示水稻物种完整基因组序列信息提供了绝佳机会[6]。近年来,“(3K 水稻) 水稻基因组计划”在揭示全球所有水稻种质资源的基因组多样性方面取得了重要进展[7]。基因组学辅助育种的发展加深了我们对水稻遗传背景下关键性状和数量性状位点 (QTL) 的传递和渗透的理解。这一进展为加强水稻育种过程提供了重要帮助[8]。此外,随着基因组知识和技术的不断进步,水稻杂种优势遗传及其分子基础研究取得了重大进展。然而,了解其潜在机制
摘要 :植物育种在增强植物遗传潜力方面发挥着重要作用,旨在改善植物的产量、抗病性和抗逆性等特性。本文深入分析了各种植物育种技术,包括大规模选择和杂交等传统方法,以及基因工程和 CRISPR(成簇的规律间隔的短回文重复序列)/Cas9 基因编辑等现代创新方法。对每种方法都进行了彻底分析,以评估其在作物改良方面的具体应用和成就方面的有效性、潜在应用和局限性,强调植物育种在确保粮食安全和农业可持续性方面的重要作用。通过开发高产和抗逆性作物品种,植物育种不仅可以应对气候变化带来的挑战,而且还有助于提高农业的经济可行性。植物育种方法的不断发展凸显了研究和创新对于满足全球粮食需求的重要性。
摘要 玉米(Zea mays ssp. mays)是当今世界产量最高的作物,广泛用作食品、饲料和各种工业产品的原料。玉米产量的不断提高是植物育种和现代农业成功的见证。在驯化和历史育种过程中,人类对其形态和生理性状进行了强烈的选择,以利于生态适应、产量和营养价值的提高以及收获。玉米功能基因组学研究的最新进展极大地深化和扩展了我们对玉米驯化和遗传改良的分子和遗传基础的认识。在本文中,我们总结了玉米驯化和驯化后遗传改良的关键性状和调控基因,并对如何利用这些知识来加速未来的玉米育种进行了前瞻性的展望。
马拉加大学亚热带和地中海园艺研究所 (IHSM) 和位于西班牙南部马拉加的西班牙科学研究委员会 (https://www.ihsm.uma-csic.es/) 正在寻求吸纳一位才华横溢、积极进取的博士后科学家,旨在成为园艺植物遗传学和育种方面的专家。此次吸纳将首先通过安达卢西亚自治区 Qualifica-Junta 项目 QUAL21-00012 的 3 年合同进行。