摘要 — 如今,用户与计算机系统交互。行为生物识别包括分析用户交互以进行识别和验证应用程序。这种方法对于增强安全性和改善用户体验非常有用,并且还涉及许多隐私问题。在本文中,我们解决了考虑用户行为的用户识别问题。经典机器学习方法对此类数据的效率如何?深度学习方法呢?我们在两种行为模式上说明了这项工作,即使用智能手机的人类活动和笔记本电脑上的击键动态。由于大多数行为生物识别模式的准确率低于形态学模式,我们考虑了两种可以表示为时间序列的这些模式的方法:经典机器学习和深度学习技术。我们打算表明,许多算法可以在不同模式下获得非常好的性能,而无需对所考虑的模式进行任何特定的调整。通过这种比较分析,我们可以表明行为生物识别技术可用于安全应用(即谁在访问公司信息系统),但可能会引起隐私问题,因为用户在浏览互联网时可能会被识别。