传统的自由模型通常会隔离自主权,从而导致概念上的显着差距。自由主义者的自由意志强调完全独立于外部决定因素,这是一种理想化和不受约束的代理形式。这种观点忽略了自主权固有地受到系统性和关系影响的方式。另一方面,兼容允许在确定性的边界内自由意志,但会降低自主权,仅与内部欲望相结合,无法说明能够实现道德化增长和反思性决策的机制(Wisniewski等人,2019年)。 坚硬的决定论认为所有人类行为都是由外部因素决定的,它否认了自由的存在。 虽然在逻辑上保持一致,但这种观点忽略了人类通过有意识的努力来反思和重塑其行为的可观察能力。 关系方法(例如关系自主权和集体意图)正确地强调了社会关系在塑造自主权中的作用,但经常将这些影响降低到次要重要性,忽略了人类决策的相互联系和系统性的维度(Christman,1990; Mackenzie&Stoljar,2000; 2000年)。 共同解决了自由意志的发展,关系和道德方面(Frankfurt,1971)。兼容允许在确定性的边界内自由意志,但会降低自主权,仅与内部欲望相结合,无法说明能够实现道德化增长和反思性决策的机制(Wisniewski等人,2019年)。坚硬的决定论认为所有人类行为都是由外部因素决定的,它否认了自由的存在。虽然在逻辑上保持一致,但这种观点忽略了人类通过有意识的努力来反思和重塑其行为的可观察能力。关系方法(例如关系自主权和集体意图)正确地强调了社会关系在塑造自主权中的作用,但经常将这些影响降低到次要重要性,忽略了人类决策的相互联系和系统性的维度(Christman,1990; Mackenzie&Stoljar,2000; 2000年)。共同解决了自由意志的发展,关系和道德方面(Frankfurt,1971)。
近年来,已经提出了连续的潜在空间(CLS)和DISCRETE潜在空间(DLS)深度学习模型,以改善医学图像分析。但是,这些模型遇到了不同的挑战。cls模型捕获了复杂的细节,但由于其强调低级特征,因此在结构表示和易男性方面通常缺乏解释性。尤其是,DLS模型提供了可解释性,鲁棒性以及由于其结构性潜在空间而捕获粗粒度信息的能力。但是,DLS模型在捕获细粒细节方面的功效有限。为了确定DLS和CLS模型的局限性,我们采用了Synergynet,这是一种新型的瓶颈体系结构,旨在增强现有的编码器 - 核编码器分割框架。Synergynet无缝地将离散和连续的表示形式整合到利用互补信息中,并成功保留了细学的表示的细节。我们对多器官分割和CAR-DIAC数据集进行的实验实验表明,SynergyNet的表现优于包括Transunet:Transunet:DICE评分提高2.16%的其他最新方法,而Hausdorff分别分别提高了11.13%。在评估皮肤病变和脑肿瘤分割数据集时,我们观察到皮肤病变分割的交互分数的1.71%的重新提高,脑肿瘤分割的增长率为8.58%。我们的创新方法为增强医学图像分析关键领域中深度学习模型的整体性能和能力铺平了道路。
Mirada AI 所要应对的核心挑战是人工智能技术日益集中化,这导致了影响用户的几个关键问题。集中化的人工智能平台通常会实施限制性政策,并实施有偏见的审查制度,这不仅会扼杀创造力并导致信息不准确,而且还会限制人工智能的可访问性和公平性。这种集中化导致权力和控制的集中,使用户对这些技术的开发和应用的发言权有限。此外,这些平台缺乏透明度和包容性,阻碍了全球视角的多样化表达,导致人工智能输出存在偏见和不平衡。Mirada AI 旨在通过提出一种去中心化的、社区驱动的方法来解决这些问题,确保公平访问,并致力于最大限度地减少偏见,从而促进更真实、更具创新性的人工智能格局。
允许将本工作的全部或一部分用于个人或课堂使用的数字或硬副本允许,而没有费用,只要副本不是用于Proft或Commercial Advantage的副本,并且副本均带有此通知和FRST页面上的完整引用。必须尊重他人所拥有的这项作品的组成部分的版权。允许用信用摘要。否则复制或重新发布以在服务器上发布或重新分配到列表,需要事先指定许可和/或费用。请求权限从permissions@acm.org。CHI '24,5月11日至16日,2024年,美国HI,HI,HI©2024由所有者/作者持有的版权。 出版权许可获得ACM的权利。 图像已深入地融入我们的生活中。 是否ACM ISBN 979-8-4007-0330-0/24/05 https://doi.org/10.1145/3613904.3642129通过绘画,摄影或数字技术,创建CHI '24,5月11日至16日,2024年,美国HI,HI,HI©2024由所有者/作者持有的版权。出版权许可获得ACM的权利。图像已深入地融入我们的生活中。是否ACM ISBN 979-8-4007-0330-0/24/05 https://doi.org/10.1145/3613904.3642129通过绘画,摄影或数字技术,创建
通过利用量化误差和加性噪声之间的相似性,可以通过使用扩散模型“ denoise”量化引入的伪影来构建基于扩散的图像压缩编解码器。但是,我们确定了这种方法中的三个差距,从而导致量化的数据排除在扩散模型的分布之外:噪声水平,噪声类型和由离散化引起的差距的差距。为了解决这些问题,我们提出了一个新型的基于量化的正向扩散过程,该过程是理论上建立的,并桥接了上述三个差距。这是通过经过精心量身定制的量化时间表以及对均匀噪声训练的扩散模型来实现的。与以前的工作相比,我们提出的架构也会产生一贯的现实和详细的结果,即使是在极低的比特率下,同时保持对原始图像的忠诚度。
抽象能够将他人的活动映射到自己的观点中,即使从很小的时候就开始是一种基本的人类技能。迈向理解这种人类能力的一步,我们介绍了EgoExolearn,这是一个大规模的数据集,该数据集在过程之后模仿人类的演示,在该过程中,个人在执行以exentric-exentric-view示范视频为指导的任务时记录了以自我为中心的视频。关注日常援助和专业支持中的潜在应用,Egoexolearn Conconconconconconconconconconcons conconce concection和示范视频数据涵盖了在日常生活场景和专业实验室中捕获的120小时的120小时。与视频一起,我们记录了高质量的凝视数据并提供了详细的多模式注释,并构建了一个游乐场,用于建模人类从不同观点桥接异步程序动作的能力。为此,我们提出了基准,例如跨视图协会,跨视图行动计划和跨视图所引用的技能评估以及详细的分析。我们期望EgoExolearn可以作为跨越观点弥合行动的重要资源,从而为创建能够通过在现实世界中观察人类进行缝隙学习的AI代理铺平了道路。数据集和基准代码可在https://github.com/opengvlab/egoeexolearn上找到。
1。防止监管套利并确保政策有效性8 2。通过综合保障措施减轻无边界的AI风险8 3。加强国际协议的合法性9 4.利用独特的见解来解决被忽视的风险9 5。标准对全球公共物品的一致性10 6。Upholding Ethical Responsibility and Global Fairness 10 Global South Inclusion in Future Safety Summits 11 Recommendations 12 Objective 1: Establish AI Safety Institutes to Build State Capacity in the Global South 12 Objective 2: Coordinate a Global Moratorium on Lethal Autonomous Weapons Systems (LAWS) 14 Objective 3: Leverage AI Responsibly for Achieving the Sustainable Development Goals (SDGs) 16 Objective 4: Safeguard Human Rights, Democracy, and the Rule of Law in AI Governance 17目标5:缓解AI系统中的语言和文化偏见19结论20
生物学入侵正在影响全球生物多样性,生态系统和社会经济。海洋非土著物种(MNIS)可以通过人类活动(例如海上运输和粗心丢弃水族馆物种)引入。尽管为防止引入MNI的努力做出了重大努力,但仍会出现事件,包括紫s,甲壳类动物,沿海,anthozoans,bryozoans,bryozoans,sponges,acraalgae,acroalgae,seagrasses and Mangroves(Alidoost Salimi Salimi等,2021)。一旦MNI在接收者地区建立,控制和消除它们就成为一项艰巨的任务。早期对MNIS的认识可以提高早期反应的有效性,特别是在引入阶段,这对于减少MNIS的影响至关重要。因此,必须在成功建立新栖息地并对当地生物多样性构成威胁之前,制定可靠且具有成本效益的策略来对MNI的早期发现进行早期检测。公众在海洋保护中扮演着重要角色(EARP和LICONTI,2020年),例如检测和监视Acanthaster SPP的爆发和监测。(Dumas等,2020),以及管理侵入性狮子弯曲势力(Clements等,2021)。为了监视MNIS的存在,已采取行动来帮助公众熟悉并有效地认识这些物种,例如使用手表清单和指南。然而,由于海洋物种的生物多样性,准确识别标本
● 初级视觉皮层方向图的中心模型 ● 模拟表明海马神经元中不同电流的信息处理作用 ● 最佳神经脉冲分类 ● 用于模板匹配的神经网络:应用于真实神经元动作电位的实时分类 ● 嗅觉皮层的计算机模拟,对嗅觉信息的存储和检索具有功能意义 ● 利用小脑网络模型进行运动控制的方案 ● 大脑新皮层的计算机模拟 ● 从猴子、人类和机器的运动中发现结构