摘要 — 本教程关于正交时频空间 (OTFS) 调制的前两部分讨论了延迟多普勒 (DD) 域通信的基本原理以及一些先进的收发器设计技术。在本文中,我们将介绍一种基于 OTFS 的集成传感和通信 (ISAC) 系统,该系统被视为下一代无线通信的一项使能技术。特别是,我们说明了 OTFS-ISAC 系统的传感和通信模型。接下来,我们表明,得益于时不变的 DD 信道,传感参数可用于推断通信信道,从而实现高效的传输方案。由于这两种功能都是在同一个 DD 域中实现的,我们简要讨论了基于 OTFS 的 ISAC 系统的几个有希望的优势,这些优势尚未完全揭晓。最后,我们将重点介绍 OTFS 在未来无线网络中的一系列潜在应用。
人类谷氨酰胺基环酶(HQC)引起了人们的关注,并成为阿尔茨海默氏病(AD)的潜在毒靶标,这是由于它通过翻译后的硫酸盐酸谷氨酸型淀粉样蛋白βββββββββ杆菌的临时涉及AD的病理。最近的2A期研究表明,基于竞争性苯咪唑的QC抑制剂PQ912,AD的效率的早期证据有希望,这也表现出了有利的安全性。这个发现引发了对AD治疗的新希望。在这篇综述中,我们构成了概述HQC抑制剂的发现和演变,对经典锌结合组(ZBG)的含量尤其感兴趣 - 近年来报道的化学物质。此外,我们重点介绍了几种高功率抑制剂,并讨论了QC抑制剂开发的新趋势和挑战,作为AD的替代性和有希望的疾病调整疗法。
摘要:深度学习在众多领域都取得了优异的表现,尤其是在语音识别和计算机视觉领域。对于脑电图的研究相对较少,但在过去十年中仍然取得了重大进展。由于缺乏对脑电图深度学习的全面、主题广泛的调查,我们试图总结最近的进展,以提供概述以及未来发展的前景。我们首先简要提到了脑电图信号的伪影消除,然后介绍了已用于脑电图处理和分类的深度学习模型。随后,我们将深度学习在脑电图中的应用分为脑机接口、疾病检测和情绪识别等类别进行回顾。随后进行讨论,其中介绍了深度学习的优缺点以及未来的发展方向
摘要:抗体-药物偶联物 (ADC) 是一种新型药物,利用单克隆抗体 (mAb) 的特异性到达癌细胞上表达的靶抗原,从而递送强效的细胞毒性有效载荷。ADC 为将药物递送至肿瘤细胞提供了独特的机会,同时最大限度地降低了对正常组织的毒性,实现了更宽的治疗窗口和增强的药代动力学/药效学特性。迄今为止,FDA 已批准了 9 种 ADC,全球有 80 多种 ADC 正在临床开发中。在本文中,我们概述了 ADC 设计中每个组件的生物学和化学。我们简要讨论了已获批准 ADC 的临床经验以及与 ADC 耐药性相关的各种途径。最后,我们展望了下一代 ADC 的未来发展,包括分子成像在药物开发中的作用。
功能性合成材料与生物实体的整合已成为一种新的、强大的方法,可用于创建具有前所未有的性能和功能的自适应功能性结构。这种混合结构也称为工程化生物材料 (ELM)。ELM 有可能实现许多人们非常需要的特性,这些特性通常只存在于生物系统中,例如自供电、自修复、响应生物信号和自我维持的能力。受此推动,近年来,研究人员开始探索 ELM 在许多领域的应用,其中,传感和驱动是进展最快的领域。在这篇简短的评论中,我们简要回顾了基于 ELM 的传感器和执行器的重要最新发展,重点介绍了它们的材料和结构设计、新制造技术以及生物相关应用。我们还确定了该领域的当前挑战和未来方向,以帮助这一新兴跨学科领域的未来发展。
这是一篇说明性文章,旨在向读者介绍量子纠错的底层数学和几何学。存储在量子粒子上的信息会受到环境噪声和干扰的影响。量子纠错码可以消除这些影响,从而成功恢复原始量子信息。我们简要描述了理解量子纠错工作原理所需的量子力学背景。我们继续构建量子码:首先是量子比特稳定器码,然后是量子比特非稳定器码,最后是具有更高局部维度的码。我们将深入研究这些代码的几何学。这使我们能够有效地推导出代码的参数,推导出具有相同参数的代码之间的不等价性,并提供了一个推导出某些参数可行性的有用工具。我们还包括关于量子最大距离可分离码和量子 MacWilliams 恒等式的部分。
摘要:近几年来,我们见证了癌症患者靶向治疗的显著进展。考虑到非特异性全身(化学)疗法相关的短期和长期副作用,人们正通过引入更具体的单一或联合靶向疗法来替代或减少非特异性全身(化学)疗法的剂量。由于免疫系统和表观遗传学在调节癌症发展方面的作用众所周知,因此两者都已被探索为多种恶性肿瘤(包括影响生殖泌尿道的恶性肿瘤)的潜在靶点。由于免疫系统功能也受表观遗传学调控,因此有理由将这两种策略结合起来。然而,这方面仍未得到充分探索,即在泌尿系统肿瘤中。我们旨在简要回顾免疫疗法在前列腺癌、肾癌、膀胱癌和睾丸癌中的应用,并进一步描述为它们与表观遗传疗法相结合提供支持证据的研究。
我长期以来一直认为气候变化和滥用宗教或信仰自由(福布)构成了当今对人类流动和和谐社区的两个最大威胁。,但直到最近我才开始意识到它们的基本互连性。在国际层面上,只有民族国家对共同利益的广泛关注,超越自己的自我利益,这将优先考虑 - 因为迫害和气候变化都将共同的利益置于威胁。但是,正如这一重要的政策充分证明的那样,链接更深,更复杂。,这些问题不仅相关,而且毫不奇怪的是,解决方案也是如此。这里给出的例子确实是鼓舞人心的。正如本政策摘要所表明的那样,我们不应该感到惊讶,这些解决方案是基层,民间社会领导的。,但让我们希望并祈祷政策制定者注意。对于这些相互关联的问题有真正的解决方案,但是它们需要按大规模进行 - 紧急交付。
高质量的农作物一直是育种者和消费者最关注的方面。然而,作物质量是受遗传系统和环境因素影响的复杂特征,因此,通过传统的育种策略来改善很难改善。最近,CRISPR/CAS9基因组编辑系统,实现了有效的针对性的修改,已彻底改变了大多数作物的质量改进领域。在这篇综述中,我们将CRISPR/CAS9系统的各种基因组编辑能力,例如基因敲除,敲入或替换,基础编辑,主要编辑和基因表达调节。此外,我们重点介绍了在四个主要方面应用CRISPR/CAS9系统的作物质量改进的进步:大量营养素,微量营养素,抗营养因素等。最后,还讨论了基因组编辑在作物质量改进中的潜在挑战和未来观点。
摘要:西兰花(Brassica Oleracea L. var。Italica)是全球最重要的蔬菜作物之一。由于维生素,花青素,矿物质,纤维,二级代谢产物和其他营养素的丰富性,对西兰花的市场需求仍在增加。著名的二级代谢产物,葡萄糖苷酸盐,磺胺素和硒对癌症具有保护作用。已经在造成重要特征的精细映射和克隆基因中取得了显着进步。这一进展为西兰花育种中标记辅助选择(MAS)的选择奠定了基础。由发达的农杆菌在西兰花中介导的植物的遗传工程有助于提高质量。后期的生活;葡萄糖苷和磺胺含量;以及对昆虫,病原体和非生物胁迫的抵抗力。在这里,我们回顾了西兰花的遗传学和分子育种的最新进展。也讨论了改善西兰花的未来观点。