质子束直写 (PBW) 是由新加坡国立大学离子束应用中心 (CIBA-NUS) 开发的一种直写光刻技术,该技术利用聚焦质子来制造三维纳米结构 [1 – 3] 。与电子束光刻 (EBL) 相比,PBW 的优势在于质子比电子重 ~1800 倍,这使得质子传递给二次电子的能量更少,可以更直地穿透材料,并在光刻胶中沿其路径沉积恒定的能量 [4] 。凭借这些独特的特性,PBW 可以制造没有邻近效应且具有光滑侧壁的纳米结构 [3,5] 。目前,PBW 在光斑尺寸和吞吐量方面的性能受到 PBW 系统中射频 (RF) 离子源亮度较低 (~20 A/(m 2 srV)) 的限制 [6,7] 。因此高亮度离子源是进一步提升PBW系统性能的关键。降低的亮度是体现光束质量的重要参数,如束流密度、束流角度扩展和束流能量扩展[8,9]。减小虚拟源尺寸是获得高亮度离子源的一种实用方法[10]。高亮度离子源,如液态金属离子源 (LMIS) 和气体场电离源 (GFIS),具有较小的虚拟源尺寸。LMIS 是应用最广泛的高亮度离子源,其尖端顶部有一个液态金属储存器[11-13]。强电场用于将液态金属拉到尖锐的电喷雾锥,称为泰勒锥[14]。
叶子铜奖中的问题10询问:有一个系统可以确保计算机监视器的亮度设置和计算机睡眠时间均已最小化。如果实验室用户不确定如何执行此操作,则已经确定了可以提供支持的工作人员(在本地或中央IT部门)。本文档提供了有关如何调整PC和MAC计算机睡眠设置的如何调整计算机监视器的亮度和时间的指导。
图 1. 发光二极管结构. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . 14 图 12. 变压器特性:(a) 示意图,(b) 机械特性和
从您收到产品的那一刻起,在保修期间,即使您的保修期过期,我们也在这里为您提供支持。如果您需要设置或使用任何帮助,或者根本遇到任何问题,我们可以通过电话和电子邮件提供免费的技术支持。
近年来卫星发射数量的快速增长以及未来十年计划发射的压力要求提高空间领域感知设施的效率。光学设施是全球空间领域感知能力的重要组成部分,但传统光学望远镜仅限于在相对较短的黄昏时期观测卫星。在这项工作中,我们探索将这个运行时间扩大到一整天,以大幅改善单个站点的观测机会。我们使用 Huntsman 望远镜探路者(一种主要使用自备组件制造的仪器)和佳能远摄镜头探索白天的空间领域感知观测。我们报告了 81 颗 Starlink 卫星的光度光变曲线,从太阳高度 20 度到中午不等。发现 Starlink 卫星特别明亮,亮度为 3 . 6 ± 0 . 05mag,σ = 0 . 6 ± 0 . 05mag(斯隆 r'),或比黄昏条件亮 ∼ 11 倍。与理论模型进行比较后,我们得出结论,这种令人惊讶的观测亮度是由于轨道卫星下方的地球反照所致。最后,我们讨论了亨茨曼望远镜探路者使用日间光变曲线探测卫星轨道方向变化的潜力。
摘要 本文研究了单片二极管泵浦掺铊光纤激光器,用作 Ho-YAG 系统的泵浦源。通过优化掺杂光纤长度和腔体参数,腔体设计可实现高光-光效率和对放大自发辐射 (ASE) 引起的寄生振荡的稳定性。通过实验,我们已演示了 1907.7 nm 光纤激光器,其输出功率为 79 W,来自 10/130 μm 掺铊双包层光纤,同时具有高亮度和辐射密度。激光腔的斜率效率约为 55%,ASE 抑制 > 40 dB,近衍射极限光束质量为 M 2 ~1.07。关键词:掺铥光纤激光器,中红外激光器,寄生振荡 1.引言 与体晶体替代品相比,光纤激光器具有独特的紧凑、更可靠、坚固、高效、功率可扩展和高亮度光源[1–4]。掺铥光纤激光器 (TDFL) 具有在 1.8-2.1 μm 范围内发射的宽增益光谱,有利于从工业、遥感、医疗到国防等新兴领域的许多应用。特别是,与 1 μm 替代品相比,2 μm 激光源具有更少的大气散射畸变和更低的热晕,有利于远程激光雷达、自由空间光通信和定向能系统 [5]。此外,在材料加工(切割、焊接、钻孔)行业,虽然 1 μm 激光器经常用于金属加工,但 2 μm 激光器具有明显更高的吸收峰,可以更有效地加工塑料和玻璃材料等非金属 [6]。类似地,红外和中红外区附近的强水吸收峰使其能够在医疗应用中使用 1.9-2.1 μm 激光源,特别是在精确组织手术和碎石术中 [7-8]。另一方面,1.9 μm 左右的高亮度 Tm 掺杂光纤激光器 (TDFL) 是固态激光系统 (如 Ho-YAG) 的优异泵浦源,可实现高量子效率,可用于 TDFL 的带内和芯泵浦,并有助于参数频率转换为中红外和 THz 区 [9-11]。得益于商用发射波长为 ~790 nm 的半导体激光二极管 (LD)、多包层光纤技术和交叉弛豫带来的高量子效率的进步,大量发射波长为 ~2 μm 的高功率 Tm 掺杂光纤激光器和放大器已成功演示 [12]。在这种方法中,MOPA 系统采用芯径高达 25 μm 的大模面积 (LMA) 光纤,旨在实现约 2.05 μm 处 1kW 以上的输出功率 [13]。然而,与多级放大器系统相比,高功率振荡器可最大限度地降低成本和复杂性,从而提供更高的稳定性、稳健性和精确控制。据报道,工作在2 μm以下的直接二极管泵浦TDF振荡器的功率水平和波长均有所增加,例如在2050 nm处为170 W和300 W [14-15],在1967 nm处为278 W [16],在1950 nm处为185 W [17]。
过量卤化铵作为成分添加剂被广泛用于钙钛矿发光二极管 (PeLED),旨在通过控制晶体度和钝化缺陷来实现高性能。然而,对于过量有机铵成分是否会影响薄膜的物理/电学性质以及由此导致的器件不稳定性,我们仍然缺乏深入了解。本文指出了在具有过量卤化铵的高效甲脒铅碘化物 (FAPbI 3 ) 基 PeLED 中性能和稳定性之间的权衡,并探索了其潜在机制。系统的实验和理论研究表明,过量卤化盐诱导的离子掺杂极大地改变了 PeLED 的性质(例如,载流子注入、场相关离子漂移、缺陷物理和相稳定性)。证明了表面清洁辅助交联策略可以消除成分调制的不利影响并在不牺牲效率的情况下提高操作稳定性,同时实现 23.6% 的高效率、964 W sr − 1 m − 2 的高辐射度(基于 FAPbI 3 的 PeLED 的最高值)和 106.1 小时的长寿命在大直流密度(100 mA cm − 2)下。研究结果揭示了过量卤化物盐与器件性能之间的重要联系,为合理设计稳定、明亮、高效的 PeLED 提供了指导。
摘要:如今人们越来越倾向于晚睡,并将睡眠时间与各种电子设备一起度过。同时,BCI(脑机接口)康复设备采用视觉显示器,需要评估视觉疲劳问题,避免影响训练效果。因此,了解夜间黑暗环境下使用电子设备对人体视觉疲劳的影响非常重要。本文利用Matlab编写不同颜色范式刺激,使用屏幕亮度可调的4K显示器联合设计实验,利用眼动仪和g.tec脑电图(EEG)设备采集信号,然后进行数据处理和分析,最终得到不同颜色和不同屏幕亮度的组合对黑暗环境下人体视觉疲劳的影响。本研究让受试者评估其主观(李克特量表)感知,并在黑暗环境下(<3 lx)收集客观信号(瞳孔直径、θ+α频带数据)。 Likert量表显示,暗环境下较低的屏幕亮度可以降低受试者的视疲劳程度,受试者对蓝色的偏好高于红色。瞳孔数据显示,中高屏幕亮度下,视知觉敏感度更容易受到刺激,更容易加深视疲劳。EEG频段数据表明,典型颜色和屏幕亮度对视疲劳的影响并不显著。在此基础上,本文提出了一个新的指标——视觉抗疲劳指数,为优化室内居住环境,提高电子设备和BCI康复设备的使用满意度,以及保护人眼提供了有价值的参考。
[1]所有电池寿命索赔均为最大值,并基于使用MobileMark®2014,MobileMark®2018,MobileMark®25,MobileMark®30,Jeita 2.0,Jeita 2.0,Jeita 3.0,Jeita 3.0,连续1080p 1080p视频播放(150nits Brightness Brightness and Default and Google Power laste and Google Power Local Levelless或Google Power Power Local Test test(PLT)测试(PLT)测试(PLT)均已测试。实际电池寿命会因许多因素而异,例如产品配置和使用,软件使用,无线功能,电源管理设置和屏幕亮度。电池的最大容量将随时间和使用而降低。