随着清洁能源在全球范围内的进步,人们提出了多种利用污染更少、可再生能源的新方法。减少化石燃料消耗的努力推动了新技术的发展,如由锂离子电池、热电材料、燃料电池、光伏 (PV) 等驱动的电动汽车 (EV)。[3] 这些技术需要大量的材料和矿物。例如,典型的电动汽车电池有超过 6,000 个独立的锂离子电池,总重量约为 500 公斤,其中包括约 11.5 公斤锂、27 公斤镍、20 公斤锰、13.5 公斤钴、91 公斤铜和 180 公斤铝、钢和塑料。从矿石(锂辉石)中提取一吨碳酸锂当量 (LCE) 会产生至少 15.8 吨二氧化碳,而对于盐水,这一数值降至约 0.3 吨二氧化碳(NMC111 化学电池每千瓦时产生 33.9 千克二氧化碳当量)。[4 – 6] 盐水的水足迹为每吨锂约 470 吨水,而岩石开采的水足迹约为 170 吨。清洁能源技术和工艺的开发需要发现新材料,以提高工艺效率,减少碳、水和土地足迹,并最大限度地减少资本支出 (CAPEX) 和运营费用 (OPEX)。使用传统方法发现新材料需要大量的财务和时间投入。评估专利显示,从发现新材料到首次商业使用大约需要 1-2 年的时间。 [7] 全球清洁能源需求的快速增长给研究机构带来了巨大的压力,迫使它们加速发现可用于快速实施清洁能源进程的先进材料。
要求申请人获得Ste奖,以建立一个新的锂恢复和加工设施,称为Calipatria的Atlis Project Atlis(“项目”)。根据申请人的说法,该项目将从地热盐水中提取锂和其他矿物质,这些盐水流经相邻的羽毛状地热植物。自2016年以来,申请人的矿产提取过程已被试行,目前正在商业部署。申请人指出,该项目的目的是生产氢氧化锂一水合物(“ LHM”),该氢氧化物可以用于电池的制造,能源存储,手机和其他重要服务。该项目还将研究和开发技术,以提取其他电池特异性材料,例如硫酸锰一水合物和锌,以进一步帮助脱碳目标。
美国一些核电站将乏核燃料储存在干式贮存系统 (DCSS) 中。在许多情况下,DCSS 由一个金属储存罐组成,储存罐位于混凝土拱顶或外包装内,用于屏蔽辐射。大多数罐由奥氏体不锈钢制成,包括 UNS S30400(304 SS)。混凝土拱顶或外包装与大气相通,以进行被动冷却,从而使罐与周围环境相互作用。在沿海环境中,空气中的盐分会随着时间的推移沉积并积聚在罐表面。这些盐在潮湿环境中的潮解会在罐表面形成富含氯化物的盐水。再加上残余拉应力的存在,这可能会使罐容易受到氯化物诱导的应力腐蚀开裂。
Jared Ware 是德克萨斯州铁路委员会 (RRC) 的系统分析师和高级工程师。他负责与地热能、VI 级井许可以及锂/盐水开采活动相关的特殊项目。他曾担任 RRC 关键基础设施部门主管、德克萨斯州环境质量委员会 (TCEQ) 项目支持和环境援助部门 (PSEAD) 主任,并在陆军未来司令部担任 G4/9 理事会的高级安装、能源和环境工程师。Jared 还在美国陆军工程兵团 (USACE) 服役超过二十年,其中包括担任纽约西点军校地理空间信息科学项目的助理教授。
使用锂作为阳极的理论能量密度比硅具有更高的理论能量密度,但是存在主要挑战。是下一代电池的供应链中的一个差距。“一方面,这项技术开始通过对电动汽车进行测试的认真对待,但另一方面,金属生产和理解弊端存在差距,并将其与低成本阳极的生产过程相结合。”他说。到2030年将需要7000至20,000吨电池级金属;该行业目前具有名义容量的7000吨,其中一半用于电池。锂是从氯化锂通过碳酸锂产生的,从盐水或岩石硫酸锂中产生,但
整个大脑模型是由内德·赫尔曼(Ned Herrmann)开发的。Herrmann创建了这个隐喻模型,以说明每个人的大脑在思维和学习过程中基本上都有四个象限。这些象限中的每一个的特征都具有不同的学习或思维方式。取决于您参与的象限,学习和思维过程可能会大不相同。四种不同的样式是:A:分析(上或脑左脑)B:实用(下边缘或边缘左脑)C:关系(下或边缘右脑)D:实验性(上或脑右脑)组合的理论(Herrmann Herrmann的整个大脑模型)结合了Roger Sperry Sperry的Spline Brain Brine Themine和Paul Maclean Dr. Paul Maclean的Triune triune模型。Sperry的分裂脑理论Sperry的分裂脑理论将大脑分为两个半球。左右。每个半球都专门用于某些行为,并控制不同类型的思维类型。左脑被认为更合乎逻辑,分析和客观。据说右脑更直观,创造性,情感和主观。Maclean的三位一体脑理论MacLean的Triune Brain理论表明,人类有三个大脑。爬行动物的大脑,边缘系统和新皮层。
3通过在3中进行废物分离,分类:有机,无机,危险废物。有机废物被治疗用于堆肥以支持苗圃活动,而第三方将无机废物运送到政府垃圾填埋场。危险废物是通过提供危险的临时存储来管理的,然后再运送到有执照的第三方进行进一步治疗。4盐水和冷凝水被注入储层,并重用冷凝水来代替钻探活动中的某些地表水的使用。5家用废水通过在排放到地表水之前提供污水处理厂设施来处理。Sorik Marapi还进行定期(每日和每月)监测其处理过的废水质量和地表水,以确保其对环境安全。Sorik Marapi还将其水质监测结果报告给定期授权代理。
CCS的最后一步是将CO 2注射到地质形成中以进行长期存储。站点的选择和表征对于项目的整体成功至关重要。co 2通常存储在地面以下几千英尺的深盐水地层中。地层通常由多孔岩石(例如石灰石或砂岩)组成,这些岩石被咸水(盐水)饱和。co 2深入地层中,取代了一些盐水。在某些情况下,有可能使用耗尽的石油和天然气储层进行CO 2存储,或使用捕获的CO 2来增强油回收率(EOR)。这些选项(可在可用)可以降低前期成本,甚至可以通过出售CO 2的EOR来恢复一些成本;但是,重要的是要在整体上权衡这些策略的潜在优势,成本和风险。
在半年财务报告期间,Lithiumbank于2024年7月10日正式开设了其Calgary室内CDLE PILOT机构,艾伯塔省的能源部长Brian Jean参加了开幕式。这个里程碑是解锁艾伯塔省锂资源的重要一步。试验厂的连续直接锂提取(CDLE®)技术从艾伯塔省西部的锂银行的木板路盐水中获得了超过98%的锂回收率,生产了3,000 mg/l锂含量。然后使用简单的沉淀过程去除杂质,将溶液集中到18,000 mg/l作为碳化,结晶和再结晶的原料。最终的碳酸锂产品进行了独立分析,并确认为99.95%,符合电池级规格。