主要是供应方发电资源,以响应负载波动,可变能量生成和网格不可稳定性(Alizadeh,Parsa Moghaddam,Amjady,Siano,Siano和Sheikh-el- Eslami,2016年; Jordehi,2019; Jordehi,2019; Kondziella&Bruckella&Bruckella&Bruckella&Bruckella&Bruckella&Bruckella&Bruckella&Bruckella&Bruckella&Bruckella&Bruckselnernerne。需求方的能源管理策略,使载荷的灵活性成为一种重要的干预措施,以应对维持网格可靠性的一些新出现的挑战,而没有具有成本效益的大型大型电池(Brouwer,van den Brok,Zappa,Zappa,Turkenburg,Turkenburg和Faaij,&Faaij,&Faaij,&Faaij,2016; Denholm&Mai&Mai&Mai&Mai,2019)。随着风能和太阳能等可变能源的产生,也需要更灵活的资源,包括需求侧资源来备份间歇性发电机,并帮助管理中午的过度发生问题,这可能是由于在网格的燃料混合物中,可变能量的高渗透率引起的(Denholm&Handholm&Handholm&Mai,2011; Denholm&Mai&Mai&Mai&Mai&Mai,2011年)。较大的水部门负载柔韧性潜力得到了较大的水存储能力(可以用作潜在的能量存储),高电能需求,可观的现场能源生产以及控制系统和数字化的进步。水系统需要能量才能为最终用途的行业提供饮用水供应(Carlson&Walburger,2007; Epri,2013; Molinos-Senante&Sala-Garrido,2017; Plappally&Lienhard V,2012; Sanders&Webber&Webber&Weakel&Weakel&Wakeel,2012; wakeel,chen,hayat,als&ahmad,&ahmad&ahmad&ahmade。大量能量也用于将废水处理为可接受的标准,以释放回环境或重用(图1)。高能源成本是水公用事业在日常运营中包括能源管理策略的主要动机。通常,能源成本是水部门的第二高运营成本,仅次于人工成本(Copeland&Carter,2017年)。总共,美国消耗的年度电力中超过3%发生在水部门(Sanders&Webber,2012年);然而,由于人口增长,替代供水源的利用率增加(通常是能量密集型)以及更严格的水质调查(Cutter,Cutter,Haley,Williams,&Woo,2014; Epri,2013; Porte等,Porte等,2020)。此外,由于水的消耗行为,供水系统中的高峰用电能通常与许多电网(通常在早晨和晚上)的高峰用电量使用,夏季的峰值较高(Adamowski,2008; Deoreo et al。,2011; House,2006; House et al。 Adamowski,2015年)。本文审查了水部门的需求侧管理机会,特别是当它们与需求响应有关(即,在高批发市场价格高批发市场价格或网络可靠性问题损害网格问题时,暂时修改电力消耗的模式和幅度以减少电力使用的活动[FERC,2018])。首先,介绍了不同的DR类型和程序的概述,以及对其他补充需求端管理机会的简要说明。最后,几个障碍接下来,对水和废水领域的最新研究工作以及DR应用进行了审查,然后讨论了需求侧的管理资源,包括能源效率,能源生产和储存机会,这些资源是补充DR的。