例行会议于下午 7:13 开始,由主席 Simon 先生主持,Carrall 女士记录会议记录。会议由 Simon 先生宣布开始,随后点名并宣誓效忠。主席随后呼吁公众发表评论,此时 Arthur Outen 走上讲台,告知董事会由于位于 Penn Hills 的 Robina Dr 1213 的自来水总管破裂而对其财产造成的损害。接下来,同样居住在 Penn Hills 的 Robina Dr 1213 的 Francine Greer 向董事会致辞。 Greer 女士表示,她的财产损失索赔被保险公司拒绝,并要求董事会表示同情并代表她对该索赔提出上诉。Kev in Cooper 也出面就 1213 Robina Dr, Penn Hills 向董事会发表讲话,恳求董事会重新评估情况并帮助支付损失费用。接下来,Sim on 先生要求批准 2024 年 2 月 27 日的研讨会和常规会议记录,并于 ;
通用飞机辅助设备 (AAE) 根据 OPNAVINST 8000.16B(海军军械维护管理计划 (NOMMP))的指示,拨款用于采购新的 AAE 以弥补损耗,提供生产工程支持并满足海军打击战争总体规划规定的通用政策目标。具体而言,在 AAE 中采购了以下设备: - 通用和特殊炸弹架的升级、修改和可靠性改进。 - 各种导弹发射器和相关设备的升级、修改和可靠性改进。 - 纯空气生成系统 (PAGS) 的升级、修改和可靠性改进。PAGS 有两种变体,即 Marotta 纯空气压缩技术 (MPACT)/高压纯空气发生器 (HiPPAG),目前用作携带红外 (IR) 寻的导弹的导弹发射器的机载冷却剂发生器。 - 通用 PAGS 接口组件提供电气连接和用于 PAGS 之间氮气流动的导管单元和导弹发射器。 - BRU-55 是 BRU-33 CVER(倾斜垂直)的升级版,具有电子升级功能,允许从单个 F/A-18 站携带和释放两件 MIL-STD-1760 武器。 BRU-55 由 PMA-201 作为 Mk-82 JDAM 计划的一部分开发。 - 数字改进型三重弹射架 (DITER) 通过增加武器的智能携带能力,提高了现有 BRU-42 为 AV-8B 提供的能力
研究光介导的过程的追求驱动了能够产生X射线辐射脉冲的设施的发展(Ponseca等人。,2017年; Kranz&Wachtler,2021年; Chergui&Collet,2017年; Milne等。,2014年)。激光驱动的来源可以在各种能量中可靠地产生这种辐射,并将紧凑型设置的好处和高水平的整合性在多功能实验室中以负担得起的成本(与其他大型设施相比)相结合。对于超快泵 - 探针实验,光束生成的全光方法在两个或更多光束之间提供了出色的同步。这样的设施具有例如高级形状的泵脉冲(Assion等,1998;布鲁格曼等人。,2006年)以及不同波长范围中探针的内在性能,例如可见的,Terahertz和X射线,使用相同的泵。此处描述的来源安装在模块化的X射线光谱端站内,有可能促使使用多种互补方法进行全面研究[见De Roche等。(2003),Naumova等。 (2018),Dicke等。 (2018),Kunnus等。 (2020)和Kjaer等。 (2019)示例]。 激光驱动的等离子体X射线源(PXS)(Mallozzi等 ,1974年; Turcu&Dance,1999年; Benesch等。 ,2004年)基于将激光器聚焦为超短(低100 fs)脉冲持续时间,峰强度为10 15 –10 17 w cm 2的激光器(fullagar,fullagar,harbst et al。) ,2007年; Korn等。 ,2002年; Zamponi等。(2003),Naumova等。(2018),Dicke等。 (2018),Kunnus等。 (2020)和Kjaer等。 (2019)示例]。 激光驱动的等离子体X射线源(PXS)(Mallozzi等 ,1974年; Turcu&Dance,1999年; Benesch等。 ,2004年)基于将激光器聚焦为超短(低100 fs)脉冲持续时间,峰强度为10 15 –10 17 w cm 2的激光器(fullagar,fullagar,harbst et al。) ,2007年; Korn等。 ,2002年; Zamponi等。(2018),Dicke等。(2018),Kunnus等。(2020)和Kjaer等。(2019)示例]。激光驱动的等离子体X射线源(PXS)(Mallozzi等,1974年; Turcu&Dance,1999年; Benesch等。,2004年)基于将激光器聚焦为超短(低100 fs)脉冲持续时间,峰强度为10 15 –10 17 w cm 2的激光器(fullagar,fullagar,harbst et al。,2007年; Korn等。,2002年; Zamponi等。,2009年; Uhlig等。,2013年; Weisshaupt等人。,2014年; Afshari等。,2020)。这会导致表面原子和血浆在陡峭的梯度处的电离(Fullagar,Harbst等人。,2007年; Chen等。,2001年; Brunel,
Aneman, A., Frost, S., Parr, M., & Skrifvars, MB (2022)。心脏骤停后的目标体温管理:系统评价和贝叶斯荟萃分析。重症监护,26 (58),1-13。https://doi.org/10.1186/s13054-022-03935-z Badjatia, N., Strongilis, E., Gordon, E., Prescutti, M., Fernandez, L., Fernandez, A., . . . Mayer, SA (2008)。治疗性体温调节过程中寒颤的代谢影响:床边寒颤评估量表。中风,39 (12),3242-3247。 https://doi.org/10.1161/STROKEAHA.108.523654 Crepeau, AZ、Rabinstein, AA、Fugate, JE、Mandrekar, J.、Wijdicks, EF、White, RD 和 Britton, JW (2013)。心脏骤停后低温治疗中的连续脑电图:预后和临床价值。神经病学,80 (4), 339-344。 https://doi.org/10.1212/WNL.0b013e31827f089d Dankiewicz, J.、Cronberg, T.、Lilja, G.、Jakobsen, JC、Levin, H.、Ullén, S., 。 。 。尼尔森,N.(2021)。院外心脏骤停后体温过低与正常体温。新英格兰医学杂志,384 (24), 2283-2294。https://doi.org/10.1056/NEJMoa2100591 心脏骤停后低温研究组。(2002)。轻度治疗性低温可改善心脏骤停后的神经系统结果。新英格兰医学杂志,346 (8), 549-556。https://doi.org/10.1056/NEJMoa012689 Lascarrou, JB、Merdji, H.、Le Gouge, A.、Colin, G.、Grillet, G.、Girardie, P.、...CRICS-TRIGGERSEP 小组 (2019)。针对性体温管理治疗不可电击心律的心脏骤停。新英格兰医学杂志,381 (24), 2327–2337。 https://doi.org/10.1056/NEJMoa1906661 McKean, S. (2009)。心脏骤停后诱导中度低温治疗。AACN 高级重症监护,20 (4), 343-355。https://doi.org/10.4037/15597768-2009-4008 Nielsen, N., Wetterslev, J., Cronberg, T., Erlinge, D., Gasche, Y., Hassager, C., . . Friberg, H. (2013)。心脏骤停后目标体温管理为 33°C 与 36°C。新英格兰医学杂志,369 (23), 2197-2206。 https://doi.org/10.1056/NEJMoa1310519 Payen, JF, Bru, O., Bosson, JL, Lagrasta, A., Novel, E., Deschaux, I., . . Jacquot, C. (2001)。使用行为疼痛量表评估重症镇静患者的疼痛。重症监护医学,29 (12),2258-2263。https://doi.org/10.1097/00003246-200112000-00004 Perman, SM, Bartos, JA, Del Rios, M., Donnino, MW, Hirsch, KG, Jentzer, JC, . . . Berg, KM (2023)。昏迷心脏骤停成年幸存者的体温管理:美国心脏协会的科学咨询。《循环》,148 (12),982-988。https://doi.org/10.1161/CIR.0000000000001164 Polderman, KH (2009)。低温的作用机制、生理效应和并发症。《重症监护医学》,37 (7),S186-S202。https://doi.org/10.1097/CCM.0b013e3181aa5241 Pugh, RNH、Murray‐Lyon, IM、Dawson, JL、Pietroni, MC 和 Williams, R. (1973)。食管横断术治疗食管静脉曲张出血。英国外科杂志,60 (8), 646-649。https://doi.org/10.1002/bjs.1800600817 Šunjić, KM、Webb, AC、Šunjić, I.、Palà Creus, M. 和 Folse, SL (2015)。目标体温管理期间药物治疗的药代动力学和其他注意事项。重症监护医学,43 (10), 2228-2238。https://doi.org/10.1097/CCM.0000000000001223 Weant, KA、Martin, JE、Humphries, RL 和 Cook, AM (2010)。减少治疗性低温引起的寒战反应的药物选择。药物治疗:人类药理学和药物治疗杂志,30 (8), 830-841。https://doi.org/10.1592/phco.30.8.830