审稿人 János Andócsi(克罗地亚匈牙利教育和文化中心,埃塞克) Beke Ottó(匈牙利语言教师培训学院,Szabadka) Aliz Bohner-Beke(József Eötvös 学院,巴哈) Julianna Boros(PTE BTK 社会关系学院,佩奇) ) Eszter Bucher(佩奇 PTE BTK 社会与媒体科学研究所社会学系)Daróczi Gabriella(布达佩斯罗兰大学) Róbert Farkas(萨巴德卡匈牙利教师培训学院) Laura Furcsa(埃格尔卡罗利埃斯泰哈齐大学) Eszter Gábrity(萨巴德卡匈牙利教师培训学院) Irén Gábrity Molnár(萨巴德卡经济大学) Lajos Göncz(人文学院,Újvidék)希腊语Noémi(匈牙利教师培训学院, Szabadka) Beáta Grabovac (匈牙利教师培训学院,Szabadka) Katalin Hegedűs (匈牙利教师培训学院,Szabadka) Rita Horák (匈牙利教师培训学院,Szabadka) Éva Hózsa (匈牙利教师培训学院,Szabadka) Julianna Ispánovics Csapó (艺术学院,诺维萨德) ) Ivanović Josip (匈牙利语言教师培训学院,Szabadka) Janković, Prvoslav (Pedagoški fakultet, Sombor) Koporčić, Maja (Sveučilište Josipa Jurja Strossmayera, Osijek) Cintia Kovács (匈牙利语言教师培训学院,Szabadka) Zsolt Lázár (人文学院,乌伊维代克) Major Lenke (匈牙利语言教师培训学院,Szabadka) Marić, Slađana(诺维萨德人文学院) Marussig, Jurij(滨海边疆区大学,科佩尔教育学院) Zoltán Mészáros (Szabadkai Tört
技术描述 在含水层热能存储 (ATES) 中,多余的热量被储存在地下含水层中,以便在后期回收热量。热能被储存为温暖的地下水。地下水还用作将热量传输到地下和从地下传输热量的载体。因此,热能通过从含水层通过井生产和注入地下水来储存和回收。ATES 系统的容量范围从 0.33 MW 到 20 MW(Fleuchaus 等人,2018 年)。通常,ATES 按季节运行。夏季,来自燃气或燃煤发电厂、太阳能发电厂或热电联产厂的多余热量通过热交换器转移到冷地下水中。由此产生的温暖地下水将热量输送到含水层,热量在那里储存起来。在冬季,ATES 通过逆转生产井和注入井中的流量以相反的方向运行。现在,通过热交换器从温暖的地下水中回收储存的热量并用于供暖,而将产生的冷地下水重新注入含水层。通常,注入井和生产井之间的距离在 1000 米到 2000 米之间(Stober 和 Bucher 2014)。含水层的深度也各不相同。例如,在柏林,ATES 的深度在浅层含水层中为 30 米到 60 米之间,而在诺伊鲁平,深度约为 1700 米。在荷兰,大多数 ATES 系统使用地下深度在 20 米到 150 米之间的含水层(Bloemendal 和 Hartog 2018)。与深度相对应,热存储以不同的温度运行。低温 (LT) ATES 的运行温度低于 30°C,通常位于浅层含水层;中温 (MT) ATES 指的是 30°C 至 50°C 之间的温度范围;高温 (HT) ATES 的运行温度为 50°C 及以上(Lee 2013)。与 MT 和 HT-ATES 相比,由于 LT-ATES 中的温度较低,因此使用热泵将温度升高到加热相关建筑物所需的水平,例如 40°C。同时,抽取的地下水被冷却到 5°C 至 8°C 之间的温度。随后,将冷地下水重新注入冷井。夏季,可以使用冷井中的地下水有效地为建筑物降温。由于热泵的冷却过程,该水被加热到 14°C 至 18°C 之间的温度范围。随后,加热的地下水通过暖井储存在 LT-ATES 中,以便在冬季回收。如果冷却不需要在前一个冬季储存的低温地下水附近安装任何设施,则称为免费冷却。当多余的热量
对含水层热量储存(ATE)中技术的描述,在地下含水层中存储过多的热量,以便在以后恢复热量。热能被存储为温暖的地下水。地下水也被用作载热到地下的载体。因此,热能是通过从含水层从含水层从含水层从含水层中生产和注入地下水来存储和回收的。ATES系统的容量从0.33 MW到20 MW(Fleuchaus等人2018)。通常,ATES是季节性的。在夏季,通过热交换器转移到寒冷的地下水中,来自天然气或燃煤发电厂,太阳能或热电联产厂的过量热量被转移到寒冷的地下水中。由此产生的温暖地下水将热量运输到含热量的含水层中。在冬季,通过逆转生产和注入井的流量,将ATES运行相反的方向。现在,通过热交换器从温暖的地下水中回收了存储的热量,并用于加热目的,而所产生的冷地下水则在含水层中重新注射。通常,注入和生产井之间的距离在1000 m至2000 m之间(Stober and Bucher 2014)。含水层的深度也有所不同。在柏林,例如,在浅水含水层中,ATE的深度在30 m至60 m之间,而在Neuruppin中,它约为1700 m。在荷兰,大多数ATES系统在地下中使用20 m至150 m之间的含水层(Bloemendal和Hartog 2018)。过多热量与深度相对应,在不同温度下进行热量储藏。低温(LT)ate在30°C以下运行,通常位于浅含水层中,中等温度(MT)ates是指在30°C和50°C之间的温度范围和高温(HT)ATES在50°C和更高的温度(Lee 2013)下运行(Lee 2013)。与MT-和HT-ates相比,由于LT-ates的低温,热泵可将温度提高到加热相关建筑物(例如40°C)所需的水平。同时将提取的地下水冷却至5°C和8°C之间的温度。随后,将冷地下水重新注入冷井中。在夏季,可以使用寒冷井中的地下水有效冷却建筑物。由于热泵的冷却过程,该水被加热到14°C和18°C之间的温度范围。随后,加热的地下水是通过LT-ates的温暖井来存储的,以便冬季以后恢复。如果冷却在上一个冬季存储的低温地下水旁边不需要设施,则称为免费冷却。
(1)Paschen S.,Winkler H.,New T.,Criegising M.,Hilscher G.,Custers J.,Procophyiv A.,Strydom A.2010 J.物理。conf。存在。,200 012156(2)Mason T. E.,Aepli G.,Ramirez A. P.,Clausen K. N.,Broholm C.,研究N.,Burst E.,Palstra T. M. 1992 Phys。修订版Lett。 69 490–493(3)Li G.,Xiang Z.,Yu F.,Asaba T.,Lawson B.,Cai P.,Tinsman C.,Berkley A.,Wolgast S. 2013 NAT。 公社。 4 2991(5)Geibel C.,Shield C.,Thies S.,Kitazawa H.,Breedl C B条件。 物质84 1–2(6)Sampohis K. V.,Zijlstra E. S.,Bose S.K. 2004 Phys。 修订版 b 69 094514(7)Nakatsuji S.,Kuga K.,Machida Y.,Tayama T.,Sakakibara T.,Karaki Y.,Ishimoto H.,Ishimoto H. 2008 NAT。 物理。 4,603–607(8)石油C 条件。 物质13 L337 – L342(9)Steglic F.,AARS J 修订版 Lett。 43,1892–1896(10)Qi X.-L.,Zhang S.-C。 2011修订版Lett。69 490–493(3)Li G.,Xiang Z.,Yu F.,Asaba T.,Lawson B.,Cai P.,Tinsman C.,Berkley A.,Wolgast S. 2013 NAT。 公社。 4 2991(5)Geibel C.,Shield C.,Thies S.,Kitazawa H.,Breedl C B条件。 物质84 1–2(6)Sampohis K. V.,Zijlstra E. S.,Bose S.K. 2004 Phys。 修订版 b 69 094514(7)Nakatsuji S.,Kuga K.,Machida Y.,Tayama T.,Sakakibara T.,Karaki Y.,Ishimoto H.,Ishimoto H. 2008 NAT。 物理。 4,603–607(8)石油C 条件。 物质13 L337 – L342(9)Steglic F.,AARS J 修订版 Lett。 43,1892–1896(10)Qi X.-L.,Zhang S.-C。 2011修订版69 490–493(3)Li G.,Xiang Z.,Yu F.,Asaba T.,Lawson B.,Cai P.,Tinsman C.,Berkley A.,Wolgast S.2013 NAT。 公社。 4 2991(5)Geibel C.,Shield C.,Thies S.,Kitazawa H.,Breedl C B条件。 物质84 1–2(6)Sampohis K. V.,Zijlstra E. S.,Bose S.K. 2004 Phys。 修订版 b 69 094514(7)Nakatsuji S.,Kuga K.,Machida Y.,Tayama T.,Sakakibara T.,Karaki Y.,Ishimoto H.,Ishimoto H. 2008 NAT。 物理。 4,603–607(8)石油C 条件。 物质13 L337 – L342(9)Steglic F.,AARS J 修订版 Lett。 43,1892–1896(10)Qi X.-L.,Zhang S.-C。 2011修订版2013 NAT。公社。4 2991(5)Geibel C.,Shield C.,Thies S.,Kitazawa H.,Breedl CB条件。物质84 1–2(6)Sampohis K. V.,Zijlstra E. S.,Bose S.K. 2004 Phys。修订版b 69 094514(7)Nakatsuji S.,Kuga K.,Machida Y.,Tayama T.,Sakakibara T.,Karaki Y.,Ishimoto H.,Ishimoto H.2008 NAT。 物理。 4,603–607(8)石油C 条件。 物质13 L337 – L342(9)Steglic F.,AARS J 修订版 Lett。 43,1892–1896(10)Qi X.-L.,Zhang S.-C。 2011修订版2008 NAT。物理。4,603–607(8)石油C条件。物质13 L337 – L342(9)Steglic F.,AARS J修订版Lett。 43,1892–1896(10)Qi X.-L.,Zhang S.-C。 2011修订版Lett。43,1892–1896(10)Qi X.-L.,Zhang S.-C。 2011修订版43,1892–1896(10)Qi X.-L.,Zhang S.-C。 2011修订版mod。物理。83 1057–1110(11)Shekhar C.,Ouardi S.,Fecher G. H.,Kumar Nayak A.,Felser C.,Ikenaga E. 2012 Appl。83 1057–1110(11)Shekhar C.,Ouardi S.,Fecher G. H.,Kumar Nayak A.,Felser C.,Ikenaga E. 2012 Appl。
Press release Ellwangen, May 2, 2024 VARTA initiates and coordinates new project for next-generation energy storage A consortium of 15 companies and universities researches and develops sodium-ion batteries / The aim is to develop industrially usable, high-performance and environmentally friendly cells / Federal Research Minister Stark-Watzinger presented the funding decision on Thursday Sodium-ion batteries are seen as a bearer of hope for the future of sustainable和节省资源的储能:钠很容易获得,廉价,安全并且可以轻松处理或回收。挑战是将该技术转移到具有工业可用和可扩展的细胞中。这是Entise Project(用于工业可扩展存储的钠离子技术的开发)所在的地方,该项目由15家公司和大学组成的财团推动,Varta担任发起人和协调员。Entise由德国联邦研究和教育部资助,约有750万欧元。在5月2日(星期四),该项目得到了联邦研究部长贝蒂娜·斯塔克·瓦辛格(Bettina Stark-Watzinger)的资助决定的正式批准。资助项目负责人Nicolas Bucher博士,Varta AG的CTO Rainer Hald接受了Varta Microbattery和Varta Storage的通知。该项目定于2024年6月1日开始。旨在为钠离子电池开发出高性能,具有成本效益和环保的细胞化学性质,并将其转移到功能性细胞格式中,该格式也可以并且也应在行业中使用。循环稳定性,即Rainer Hald,Varta AG的首席技术官:“对于德国电池界,该项目代表了可持续钠离子电池开发的里程碑 为了进一步推进分散的储能和使用的未来,除锂离子技术外,还需要其他创新和强大的存储技术。 除了现有技术外,钠离子电池还可以为许多区域的脱碳和电气做出重要的,可持续的贡献,以积极地塑造能量和移动性过渡。 该项目的资金是一个重要的迹象,即电池行业的尖端技术的研发可以在德国和欧洲拥有未来。 我们作为一个财团的感谢,因此向德国政府致以支持,尽管降低了电池研究的资金,但仍同意支持Entise。” 。 entise着重于现有材料概念和过程的进一步发展。 从技术的角度来看,要改善阴极和阳极的存储能力。 这涉及优化所使用的材料,包括所使用的电解质。 即使在重复充电和放电后,也可以通过开发和使用新材料,优化的电极材料和涂料来确保稳定的细胞性能。 该项目的一个中心部分将是生产足够数量的必要材料,以在圆形细胞设计中生产直至原型的单个弹性实验室样品。 该项目的结束已设定为2027年中。Rainer Hald,Varta AG的首席技术官:“对于德国电池界,该项目代表了可持续钠离子电池开发的里程碑为了进一步推进分散的储能和使用的未来,除锂离子技术外,还需要其他创新和强大的存储技术。除了现有技术外,钠离子电池还可以为许多区域的脱碳和电气做出重要的,可持续的贡献,以积极地塑造能量和移动性过渡。该项目的资金是一个重要的迹象,即电池行业的尖端技术的研发可以在德国和欧洲拥有未来。我们作为一个财团的感谢,因此向德国政府致以支持,尽管降低了电池研究的资金,但仍同意支持Entise。”entise着重于现有材料概念和过程的进一步发展。从技术的角度来看,要改善阴极和阳极的存储能力。这涉及优化所使用的材料,包括所使用的电解质。即使在重复充电和放电后,也可以通过开发和使用新材料,优化的电极材料和涂料来确保稳定的细胞性能。该项目的一个中心部分将是生产足够数量的必要材料,以在圆形细胞设计中生产直至原型的单个弹性实验室样品。该项目的结束已设定为2027年中。在项目的最后阶段,各个组件将被扫描并从实验室转移到工业和研究所合作伙伴之间合作的工业前部门(试点)。此展览的最终产品将是一小部分圆形细胞,可以在实际应用方案(例如电动汽车和固定存储系统)中对属性进行可靠的评估。伴随的技术,经济和生态评估在项目中回合。