1 S. Datta、S. Dutta、B. Grisafe、J. Smith、S. Srinivasa 和 H. Ye,IEEE Micro 39,8 (2019)。2 T. Bryllert、L.-E. Wernersson、T. Löwgren 和 L. Samuelson,Nanotechnology 17,S227 (2006)。3 D. Akinwande、N. Petrone 和 J. Hone,Nat Commun 5,5678 (2014)。4 R. Chen、H. Kim、PC McIntyre、DW Porter 和 SF Bent,Applied Physics Letters 86 (2005)。5 R. Chen、H. Kim、PC McIntyre 和 SF Bent,Applied Physics Letters 84,4017 (2004)。 6 S. Seo、BC Yeo、SS Han、CM Yoon、JY Yang、J. Yoon、C. Yoo、HJ Kim、YB Lee、SJ Lee、JM Myoung、HB Lee、WH Kim、IK Oh 和 H. Kim,ACS Appl Mater Interfaces 9,41607 (2017)。7 KJ Park、JM Doub、T. Gougousi 和 GN Parsons,Applied Physics Letters 86 (2005)。8 FS Minaye Hashemi、C. Prasittichai 和 SF Bent,ACS Nano 9,8710 (2015)。9 WH Kim、HBR Lee、K. Heo、YK Lee、TM Chung、CG Kim、S. Hong、J. Heo 和 H. Kim,Journal of the Electrochemical Society 158,D1 (2011)。 10 H. Kim,ECS Transactions 16, 219 (2008)。11 R. Wojtecki、J. Ma、I. Cordova、N. Arellano、K. Lionti、T. Magbitang、TG Pattison、X. Zhao、E. Delenia 和 N. Lanzillo,ACS applied materials & interface 13, 9081 (2021)。12 E. Färm、M. Kemell、M. Ritala 和 M. Leskelä,The Journal of Physical Chemistry C 112, 15791 (2008)。13 E. Färm、M. Kemell、E. Santala、M. Ritala 和 M. Leskelä,Journal of The Electrochemical Society 157 (2010)。 14 A. Sinha、DW Hess 和 CL Henderson,《真空科学与技术杂志 B:微电子学和纳米结构》24(2006 年)。15 V. Suresh、MS Huang、MP Srinivasan、C. Guan、HJ Fan 和 S. Krishnamoorthy,《物理化学杂志 C 116,23729》(2012 年)。16 A. Sinha、DW Hess 和 CL Henderson,《真空科学与技术杂志 B:微电子学和纳米结构》25(2007 年)。17 TG Pattison、AE Hess、N. Arellano、N. Lanzillo、S. Nguyen、H. Bui、C. Rettner、H. Truong、A. Friz 和 T. Topuria,《ACS nano 14,4276》(2020 年)。 18 M. Fang 和 JC Ho,ACS Nano 9,8651(2015)。19 AJ Mackus、AA Bol 和 WM Kessels,Nanoscale 6,10941(2014)。20 MJ Biercuk、DJ Monsma、CM Marcus、JS Becker 和 RG Gordon,Applied Physics Letters 83,2405(2003)。21 AT Mohabir、G. Tutuncuoglu、T. Weiss、EM Vogel 和 MA Filler,ACS nano(2019)。22 E. Bassous 和 A. Lamberti,Microelectronic Engineering 9,167(1989)。23 C. Ton-That、A. Shard、D. Teare 和 R. Bradley,Polymer 42,1121(2001)。 24 P. Louette、F. Bodino 和 J.-J. Pireaux,表面科学光谱 12,69 (2005)。25 A. Richard,法拉第讨论 98,219 (1994)。
背景绿湾市正在寻求从合格的承包商(此处称为顾问或顾问团队)的建议,供海湾海滩野生动物保护区和Renard Island近岸增强栖息地修复项目。该提案请求是与格林贝市,DNR,绿湾港口和其他利益相关者(即项目团队)合作,完成初步和最终工程设计服务。最终设计将详细介绍恢复和栖息地管理措施,并提供实施所需的技术规格。下层绿湾和福克斯河地区关注的地区(LGBFR AOC)技术咨询委员会(TAC)通过评估广泛的保护目标并确定与AOC计划范围相符的行动来确定恢复标准。结果是管理行动项目和这些项目应实现的可衡量最终目标的列表。一旦满足了所有管理措施,并且满足了恢复标准(即恢复标准),就可以清除“鱼类和野生动植物栖息地的丧失”和“鱼类和野生动物种群的降解”,可以去除buis。删除这些布斯将有助于长期的AOC推荐工作。AOC中的鱼类和野生动植物恢复工作将集中于恢复,增强或保护鱼类和野生动植物栖息地的质量和数量。海湾海滩野生动物保护区和雷纳德岛的近海水生栖息地代表了批准的LGBFR AOC鱼类和野生动物栖息地和种群管理行动清单中的12个项目。DNR已获得一项大湖泊修复计划(GLRI)赠款,以与绿湾市合作,为栖息地修复活动的建筑计划和规格设计提供资金。海湾海滩野生动物保护区和雷纳德岛近海栖息地恢复项目的目的是改善鱼类和野生动植物栖息地,以解决与鱼类和野生动物相关的Buis并支持长期的AOC推荐工作。该市正在寻求一家咨询公司或具有环境评估,高地森林修复和稳定以及针对海岸线鱼类的水生栖息地恢复经验的团队,以实现这些项目目标。现场和项目描述Bay Beach Beach Wildlife Sanctuary是由绿湾公园部门管理的大型城市野生动物保护区。在1929年,该市购买了海湾海滩游乐园附近的250英亩土地,目的是创建一个高尔夫球场,尽管有关公民在1935年在阿尔多·利奥波德(Aldo Leopold)的指导下开发了一个野生动物保护区的概念。作为回应,城市公园委员会授予了5英亩用于水禽的土地,避难所的第一个池塘被手工挖出并备有受伤的水禽。从1938年到1941年,泻湖系统被扩展到55英亩的占地面积,海岸线沿线增加了更多的池塘和景观岛。1941年,城市公园娱乐和林业部对避难所进行了管理,并将其命名为海湾海滩野生动物保护区(BBWS)。在1980年,购买了约300英亩的土地,BBWS面积增加了一倍。此外,每年都是今天,BBWS拥有一个巨大的内陆近岸泻湖系统,该系统支持数百种鸟类,近400英亩的硬木沼泽,几个内陆新兴的沼泽和旧田野栖息地。在春季和秋季,BBW被认为是威斯康星州重要的鸟类区域(WIBA)和候鸟的积分中间和集中位点,在Ebird上记录了240种物种。与许多城市庇护所一样,外来物种的入侵是最紧迫的管理障碍之一。在2014年,GLRI焦点区域2授予了湾湖地区规划委员会的资金,用于从绿湾东南海岸线(包括与BBW相邻的地区)中删除五条纹。
本馆藏符合第 10 号法令中规定的国家图书和教材计划的目标。 9,099/2017,基于一致的方法提供有助于改善公立学校英语教学的资源,从而提高教育质量。该作品构成了教学行动的支持材料,尊重教师的自主权,并为他们提供替代用途,以便他们能够选择和适应最适合其环境的内容:城市或农村。这些活动以英语教学作为一项社会活动为基础,始终处于动态之中,有效地融入学生和教师的生活中,而不仅限于在课堂上进行的形式化活动。符合《指导方针和基础法》(LDB) 或第 1 号法律的指导方针。 9,394/1996,该材料除其他外,有助于培养学生行使公民权;传播对公民的社会利益、权利和义务至关重要的价值观;尊重共同利益和民主秩序;加强家庭纽带、人类团结和宽容的纽带,这是社会生活的基础。它还符合《儿童和青少年法》(ECA) 第 53 条的规定。 8,069/1990,通过促进旨在使学徒全面发展并培养他们行使公民权和获得工作资格的活动。根据 2014-2024 年国家教育计划 (PNE)(第 13,005/2014 号法律)的规定,它通过旨在促进公民意识以及道德和伦理价值观的活动,促进人文、科学、文化和技术培训和尊重人权(国家人权计划 – PNDH-3,第 10 号法令) 7,037/2009)、多样性和社会环境可持续性。该集合遵循国家九年制基础教育课程指南(决议 CNE/CEB n. 7/2010)的规定,并遵循其基础和原则。在提供学习英语语言的活动的同时,它还确保学习者获得对学习者个人发展和社会生活至关重要的社会相关知识和文化元素(第5 o )。主题的选择遵循 CNE/CEB 决议中列出的伦理、政治和美学原则。 7/2010。通过这种方式,这项工作投资于寻求正义、团结、自由和自主以及尊重人的尊严的教育,并有助于消除偏见、成见和任何形式的歧视。 、《残疾人法》(第 13,146/2015 号法律)和《老年人法》(第 10,741/2003 号法律)。此外,该系列通过不同的文化和艺术表现形式提升审美敏感性,同时又不忽视巴西文化和多元化身份。
[2] S. M. Thompson,L。Bian,N。Shamsaei和A. Yadollahi,“添加剂制造的直接激光沉积概述;第一部分:运输现象,建模和诊断,” Addive Manufacturing,第1卷。8,pp。36-62,2015年10月。[3] V. T. Le,H。Paris和G. Mandil,“使用增材和减法制造技术的直接零件再利用策略的制定”,《增材制造》,第1卷。22,pp。687-699,2018年8月。[4] V. T. Le,H。Paris和G. Mandil,“在再制造环境中合并添加剂和减法制造技术的过程计划”,《制造系统杂志》,第1卷。44,否。1,pp。243-254,2017年7月。[5] A. Ramalho,T。G. Santos,B。Bevans,Z。Smoqi,P。Rao和J. P. Oliveira,“污染对316L不锈钢线和ARC添加性生产过程中声学发射的影响”,Addived Manufacturing,第1卷。51,第1条。102585,2022年3月。[6] S. Li,J。Y. Li,Z。W. Jiang,Y。Cheng,Y。Z. Li,S。Tang等人,“控制Inconel 625的定向能量沉积期间的柱状到等式的过渡”,Addy Manufacturing,第1卷。57,第1条。102958,2022年9月。[7] T. A. Rodrigues,N。Bairrão,F。W。C. Farias,A。Shamsolhodaei,J。Shen,J。Shen,N。Zhou等人,“由Twin-Wire和Arc添加剂制造(T-WAAM)生产的钢 - Copper功能渐变的材料(T-WAAM)”,材料&Designs,第1卷。213,第1条。110270,2022年1月。66,否。8,pp。1565-1580,2022年8月。32,否。[8] V. T. Le,D。S. Mai,M。C. Bui,K。Wasmer,V。A. Nguyen,D。M. Dinh等,“过程参数和热周期的影响,对308L不锈钢墙的质量,该材料由添加剂生产产生的308L不锈钢墙,使用弧形焊接来源,使用弧形焊接源,焊接,焊接,焊接,”。[9] D. Jafari,T。H。J. Vaneker和I. Gibson,“电线和电弧添加剂制造:控制制造零件的质量和准确性的机遇和挑战”,《材料与设计》,第1卷。202,第1条。109471,2021年4月。[10] S. W. Williams,F。Martina,A。C. Addison,J。Ding,G。Pardal和P. Colegrove,“ Wire + Arc添加剂制造”,《材料科学与技术》,第1卷。7,pp。641-647,2016。[11] W. E. Frazier,“金属添加剂制造:评论”,《材料工程与性能杂志》,第1卷。23,否。6,pp。1917-1928,2014年6月。[12] J. Xiong,Y。Li,R。Li和Z. Yin,“过程参数对基于GMAW的添加剂制造中多层单频薄壁零件的表面粗糙度的影响”,《材料加工技术杂志》,第1卷。252,pp。128-136,2018年2月。[13] V. T. Le,“基于气体弧焊接的金属零件添加剂制造的初步研究”,VNUHCM科学技术杂志,第1卷。23,否。1,pp。422-429,2020年2月。58,否。4,pp。461-472,2020年7月。[15] W. Jin,C。Zhang,S。Jin,Y。Tian,D。Wellmann和W. Liu,“不锈钢的电弧添加剂制造:审查”,《应用科学》,第1卷。[14] V. T. Le,Q。H。Hoang,V。C. Tran,D。S. Mai,D。M. Dinh和T. K. Doan,“焊接电流对由薄壁低碳构建的形状和微观结构形成的影响,由电线添加剂制造建造的薄壁低碳零件”,《越南科学和技术杂志》,第1卷。10,否。5,第1条。1563,2020年3月。[16] T. A. Rodrigues,V。Duarte,J。A. Avila,T。G。Santos,R。M。Miranda和J. P. Oliveira,“ HSLA钢的电线和弧添加剂制造:热循环对微结构和机械性能的影响”,《增材制造》,第1卷。27,pp。440-450,2019年5月。[17] J. G. Lopes,C。M。Machado,V。R。Duarte,T。A。Rodrigues,T。G。Santos和J. P. Oliveira,“铣削参数对电线和弧添加剂生产产生的HSLA钢零件的影响(WAAM)”,《制造工艺杂志》,第1卷。59,pp。739-749,2020年11月。[18] A. V. Nemani,M。Ghaffari和A. Nasiri,“通过传统滚动与电线弧添加剂制造制造的船建造钢板的微观结构特性和机械性能的比较,”添加剂制造业,第1卷。32,第1条。101086,2020年3月。[19] P. Dirisu,S。Ganguly,A。Mehmanparast,F。Martina和S. Williams,“对线 +电线 + ARC添加剂生产的高强度高强度低合金结构钢组件的裂缝韧性分析”,材料科学与工程:A,第1卷,第1卷。765,第1条。138285,2019年9月。787,第1条。139514,2020年6月。[20] L. Sun,F。Jiang,R。Huang,D。Yuan,C。Guo和J. Wang,“各向异性机械性能和低碳高强度钢分量由Wired and Arc添加剂制造制造的低强度钢组件的变形行为”,材料科学和工程学:A,A,第1卷。[21] https://doi.org/10.1007/s11665-022-06784-7