自 1954 年 12 月 4 日在佛罗里达州杰克逊维尔开业以来,汉堡王一直主导着快餐店 (QSR) 行业,一直位居全球顶级汉堡连锁店之一。汉堡王在 100 多个国家和地区拥有超过 19,200 家分店,与昔日的面貌截然不同,现在的总部位于佛罗里达州迈阿密。汉堡王不仅是一家快餐连锁店,更是一种文化偶像,对此,汉堡王深感自豪。从火烤皇堡的完美口感到对鸡肉薯条等经典美食的创新改良,汉堡王占据着强大的地位。汉堡王是快餐行业的领导者,满足了追求大胆口味和卓越价值的多样化客户群的需求。我们对产品创新、营销策略和卓越运营的战略重点使汉堡王在市场上占据主导地位。
本演示稿由本公司编制,包含从第三方来源获得的信息。本演示稿旨在提供集团业务的总体概述,并不涉及、也不声称涉及有关本公司和集团的所有方面和细节。本演示稿中包含的信息和意见并非全面,且截至本演示稿日期或本文指定的日期提供。此外,本演示稿可能包含本公司从行业出版物和调查或其他类似来源获得的市场份额和行业数据。本公司可能无法获取从公共来源提取的数字数据、市场数据和其他信息背后的事实和假设,本公司、集团的任何成员或其各自的董事、高级职员、员工、股东、关联公司、代理商和顾问均无法核实此类信息,也不对此类信息的准确性承担任何责任。因此,不应过分依赖本演示稿中包含的任何数字数据或市场数据。
▪G。Bastidas,博士学位(继续)。“用于多模式图像融合的深度学习架构”。ESPOL大学,厄瓜多尔。▪L。Chuquimarca,博士学位(继续)。 “使用计算智能方法对收获后水果的外部质量检查”。 ESPOL大学,厄瓜多尔▪J.Charco,博士(2023)。 “基于多视图环境的深度学习技术中的3D人姿势估计”。 共同参议员。 ESPOL大学,厄瓜多尔。 ▪R。Rivadeneira,博士(2023)。 “使用深卷积网络增强了远红外光谱图像”。 共同参议员。 ESPOL大学,厄瓜多尔。 ▪P。Suarez,博士(2020)。 “使用深度学习技术对多光谱图像进行处理和表示”。 共同参议员。 ESPOL大学,厄瓜多尔。 ▪M。Realpe,PhD(2016)。 “城市自动驾驶汽车的可容忍感知”。 共同参议员。 澳大利亚格里菲斯大学。 ▪D。Ochoa,PhD(2011)。 “模型生物的生物图像分析”。 共同参议员。 比利时根特大学。 主论文▪L。Chuquimarca,博士学位(继续)。“使用计算智能方法对收获后水果的外部质量检查”。ESPOL大学,厄瓜多尔▪J.Charco,博士(2023)。“基于多视图环境的深度学习技术中的3D人姿势估计”。共同参议员。ESPOL大学,厄瓜多尔。▪R。Rivadeneira,博士(2023)。“使用深卷积网络增强了远红外光谱图像”。共同参议员。ESPOL大学,厄瓜多尔。▪P。Suarez,博士(2020)。 “使用深度学习技术对多光谱图像进行处理和表示”。 共同参议员。 ESPOL大学,厄瓜多尔。 ▪M。Realpe,PhD(2016)。 “城市自动驾驶汽车的可容忍感知”。 共同参议员。 澳大利亚格里菲斯大学。 ▪D。Ochoa,PhD(2011)。 “模型生物的生物图像分析”。 共同参议员。 比利时根特大学。 主论文▪P。Suarez,博士(2020)。“使用深度学习技术对多光谱图像进行处理和表示”。共同参议员。ESPOL大学,厄瓜多尔。▪M。Realpe,PhD(2016)。“城市自动驾驶汽车的可容忍感知”。共同参议员。澳大利亚格里菲斯大学。▪D。Ochoa,PhD(2011)。“模型生物的生物图像分析”。共同参议员。比利时根特大学。 主论文比利时根特大学。主论文
液态液相分离(LLP)是一种生理现象,与油和水的混合相同,从而产生具有多种物理特性的隔间。生物分子冷凝物是由LLP引起的,是基因表达和对照的关键调节剂,在恶性肿瘤的背景下具有特殊的意义。最近的研究揭示了LLP与癌症之间的紧密联系,该联系深远影响了癌症进展的各个方面,包括DNA修复,转录调节,癌基因表达以及在癌症微环境中形成关键的无膜细胞器。本综述提供了从分子到病理水平的LLP演变的全面说明。我们探索了生物分子冷凝物通过该机制控制各种细胞生理过程,包括基因表达,转录控制,信号转导和对环境压力源的反应。此外,我们集中于潜在的治疗靶标和与LLP相关的小分子抑制剂的发展。了解LLP及其在肿瘤环境中的相互作用的作用有望增强癌症治疗策略,尤其是在克服耐药性挑战方面。这些见解提供了创新的观点和支持癌症治疗的支持。
SBC计划部dcconsultees@scotborders.gov.uk苏格兰边界理事会通过电子邮件参考:24/00031/FUL - 规划许可的条件7的变化19/00182/ppp - 位于金斯梅德之家的地面上,位于金斯米德斯大道,金斯米德斯路。异议条件7需要管理计划 - 对于该地点和申请人要求保护条件7的保护7被简化为“申请站点内的林地”,因为“条件失败了循环4/1998的测试,因为条件与提出的开发无关。”但是,循环4/1998明确指出,规划机构可能会施加条件,即使申请人在申请人之外,该条件也可以根据申请人的控制,而该条件是申请的主题。开发人员已经提出了许多过去的应用程序,以进一步发展Kingsmeadows House的理由,在考虑此应用程序不忽视以前的历史时,这一点很重要。2015年,该公司当时的首席执行官在公开场合承诺,由于毫无疑问的便利设施和公共利益,不要进一步发展理由。在记录大约500异议时,在上次申请中进行了公共利益。应拒绝此应用,并受到林地的保护。提取物是从2021年提交的先前文件中附加的。真诚的
我们祝贺博士生 Gabriel Cacao 在拉斯维加斯举行的著名 Internet 2.0 大会上获得青年领袖奖!很高兴看到他对技术行业的杰出贡献和坚定承诺得到如此重要的认可。Cacao 是 Informs 学生分会的杰出成员。他始终展现创新的想法和深思熟虑的领导力。这一认可证明了他在该领域的奉献精神和专业知识。在获得该奖项后,Cacao 表达了他的感激之情,他说:“我非常感谢 Internet 2.0 社区对我的认可,感谢他们提供了一个展示创新想法和思想领导力的平台。对未来的发展充满期待!”这一成就不仅彰显了他的成就,也彰显了 Internet 2.0 大会所营造的协作和支持环境。这是一个专业人士可以联系、分享见解和相互激励的空间。
Burgess Hill以西土地的所有房屋都可以轻松地进入绿色的开放空间,从而促进进入绿色走廊,以鼓励前往当地设施的可持续旅行选择,例如学校,社区枢纽,医疗设施,当地就业和体育提供。伯吉斯山(Burgess Hill)西部土地的新净零碳房屋将将超高的能源效率与可再生技术相结合,例如太阳能电池板,空气源热泵,废水热恢复,雨水收集,快速电动汽车充电点等。这些房屋产生的可再生能源可节省与全年房屋所产生的碳一样多,因此能源账单将较低。Thakeham以零碳社区的创造领先于全国。Thakeham是英国第一个签署中小型企业气候承诺的房屋建筑商,加入了联合国的零竞选活动。
病毒学教授,病理学系健康科学系温迪·伯格斯(Wendy Burgers)是开普敦大学(UCT)病理学系病毒学教授,健康科学学院。她获得了BSC学位,BSC(荣誉)程度和MSC度,并与UCT区分开;和剑桥大学的博士学位。在2001年返回南非后,她获得了南非医学研究委员会(SAMRC)的博士后研究金,并加入了UCT的南非艾滋病疫苗倡议,开发了候选HIV疫苗。Burgers教授建立了一项独立的研究计划,重点是了解艾滋病毒感染中的细胞免疫反应,这是通过享有声望的惠康信托基金会在公共卫生和热带医学领域的中级奖学金资助,然后获得了欧洲和发展中国家临床试验伙伴关系的高级奖学金奖。在此期间,在美国国家卫生研究院(NIH)的疫苗研究中心(NIH)接受了Fogarty International培训奖学金培训。她一直是一位软资金的高级研究员,直到2014年,她被任命为UCT的高级讲师。于2017年被晋升为副教授,并于2022年被晋升为副教授。她是传染病和分子医学研究所的正式成员,也是非洲惠康传染病研究中心的成员。汉堡是一名病毒免疫学家,由于其对了解传染病的免疫力以及它们在疫苗开发和疫苗保护方面的应用而受到了全球认可。她已经研究了导致我们时代三个全球大流行病的病原体的免疫力:HIV/AIDS,TB和COVID-19。她最近的工作集中在感染和疫苗接种后了解对SARS-COV-2病毒的细胞免疫。汉堡领导了几项高影响研究,描述了对Covid-19-19疫苗接种和感染的强度和持续时间,以及SARS-COV-2变体具有关注的逃避免疫力的能力。她在这些领域的工作被高度引用,并发表在世界领先的科学和医学期刊上,即科学转化医学,新英格兰医学杂志和柳叶刀。这些研究是该领域最好的国际研究之一,可以告知我们对疫苗免疫记忆反应的理解并塑造COVID-19 COVID-19疫苗接种政策。值得注意的是,她对T细胞对SARS-COV-2的响应的开创性工作最终导致了科学期刊的一份高级作者论文,她的小组是第一个表明COVID-19疫苗接种的T细胞反应可以与Omicron的疫苗接种交叉反应,并且疫苗仍然可以为这种高度突变的ViRUS提供保护。这是一个重大的突破,自2022年以来,这项工作被引用了382次,并由60个新闻媒体展出。在19日大流行之前,她的工作着重于HIV发病机理以及HIV如何改变免疫系统。以及共同感染和合并症的后果。她确定了在未处理的HIV感染中与病毒控制相关的特定T细胞反应,并描述了尽管治疗了持续性和破坏性免疫激活。感染了艾滋病毒的人患有结核病的风险增加,在一系列出版物中,她的小组确定了一系列免疫力
尽管我们对肺癌的分子生物学理解不断进步,治疗方法也不断改进,但肺癌仍然是全球癌症相关死亡的最常见原因。因此,改进治疗方法的需求仍未得到满足,尤其是晚期肺癌。基因组不稳定性是所有癌症的普遍特征。许多最常用的化疗药物,包括顺铂等铂基化合物,都是通过直接损伤 DNA 来针对肿瘤特有的基因组不稳定性。化疗旨在选择性地针对快速分裂的细胞,在那里造成严重的 DNA 损伤并随后导致细胞死亡 ( 1 , 2 )。尽管这些药物最初有效,但化疗耐药性肿瘤的发展仍然是所有肺癌患者治疗的主要问题。DNA 损伤修复机制的正确运作对于确保维持正常的细胞周期至关重要。这些途径的失调会促进突变的积累,从而增加恶性肿瘤的可能性。在最初的恶性肿瘤发展之后,DNA 修复机制的持续破坏可能导致转移性疾病的进一步发展。肺癌被认为是基因组最不稳定的癌症之一 ( 3 )。在本综述中,我们概述了 DNA 损伤修复途径及其对肺癌疾病发生和进展的影响。最后,我们概述了当前的肺癌靶向治疗及其向联合疗法的演变,包括化疗与免疫疗法和抗体-药物偶联物以及它们靶向 DNA 损伤修复途径的机制。
39288 伯格 +49 (0) 3921 90-3109 +49 (0) 3921 90-3190 logbtl1711.kpgezi@bundeswehr.org
