1 日本札幌北海道大学全球合作研究与教育机构 (GI-CoRE) 全球人畜共患病控制站,2 澳大利亚墨尔本墨尔本大学彼得·多尔蒂感染与免疫研究所微生物学与免疫学系,3 日本札幌北海道大学国际人畜共患病控制研究所,4 日本熊本 KM Biologics 有限公司,5 日本大津滋贺医科大学病理学系发病机理与疾病调控科,6 澳大利亚墨尔本伯内特研究所免疫疗法组,7 澳大利亚墨尔本莫纳什大学中央临床学院免疫学与病理学系,8 澳大利亚帕克维尔墨尔本大学病理学系,9 澳大利亚墨尔本莫纳什大学中央临床学院阿尔弗雷德健康中心传染病系墨尔本性健康中心
2024年4月15日,个人数据业务地址辛辛那提儿童医院医疗中心急诊医学部3333 Burnet Avenue,ML5018俄亥俄州辛辛那提市,俄亥俄州45229办公室:(513)636-4528 PAGER PAGER:(513)PAGER:(513) brad.sobolewski@cchmc.org教育作品集bradsobolewski.com教育8/1996 - 5/2000 - 华盛顿和杰斐逊学院华盛顿,宾夕法尼亚州华盛顿州,宾夕法尼亚州生物学,Magna cum Laude 8/2000 - 5/2004匹兹堡大学匹兹堡大学匹兹堡大学匹兹堡大学,宾夕法尼亚州宾夕法尼亚州6/20110-2010-2011/2010辛辛那提,俄亥俄州俄亥俄州医学教育硕士6/2004 - 6/2007辛辛那提儿童医院医疗中心辛辛那提,俄亥俄州俄亥俄州儿科住院医师6/2007 - 6/2008辛辛那提儿童医院医疗中心辛辛那提,俄亥俄州俄亥俄州俄亥俄州儿童医疗机构,儿童医疗机构7/2008 - 6/6/201111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111后成儿科急诊医学学院学院学院学院学院10/2023 - 现任儿科教授(教授教授)
1 美国国家儿童医疗中心,111 Michigan Ave., NW,华盛顿特区 20010,美国 2 SARC 统计数据,威尔康奈尔医学医疗保健和政策研究,602 East 67 th Street,纽约市,NY 10065,美国 3 梅奥诊所,200 First St., SW,罗切斯特,MN 55905,美国 4 SARC,24 Frank Lloyd Wright Drive,安娜堡,MI 48105,美国 5 宾夕法尼亚大学费城儿童医院,3501 Civic Center Boulevard,19104 费城,宾夕法尼亚州,美国 6 辛辛那提儿童医院和辛辛那提大学,3333 Burnet Ave.,辛辛那提,OH 45229,美国 7 美国国家癌症研究所儿科肿瘤科,10 Center Drive,贝塞斯达, MD 20892,美国 8 肉瘤肿瘤中心,2811 Wilshire Blvd,圣莫尼卡,加利福尼亚州 90403,美国 9 密歇根大学,1500 E. Medical Center Dr.,SPC 5912,安娜堡,密歇根州 48109,美国 10 圣路易斯华盛顿大学,660 S Euclid Ave.,圣路易斯,密苏里州 63110,美国 11 国家癌症研究所,发育治疗诊所,癌症治疗和诊断分部,马里兰州贝塞斯达 20892,美国
在过去的15年中,我们目睹了对淋巴细胞及其在健康和疾病中的作用的迅速发展。传统上将外周淋巴细胞视为生物学活性有限的短活细胞,但循环淋巴细胞池非常清楚地被大量的淋巴细胞池组成,由各种起源,寿命,寿命,良好的结构特征,良好的结构特征和介导的免疫响应的细胞组成。 免疫机制可能会阻止Ehrlich在世纪之交(18)首次提出的潜在恶性细胞的发展,这是这种对淋巴细胞重新兴趣的最显着产物之一。 由Thomas(80)和Burnet(12)提出的免疫学监测的概念表明,长期活着的脊椎动物中经常降低表面抗原的肿瘤细胞的小数量,这些细胞被宿主的细胞免疫系统识别为外国,并通过免疫机制消除了这些细胞。 有力的证据证明了肿瘤转移的假设伴随着生化过程的改变,并且通过我们的小组成员充分提供了新表面抗原的出现(92)。 在此部分中,我们将讨论证据表明,含有肿瘤的宿主可以识别并应对这些新塑性变化。 我们将考虑毫无努力的某些方面,在癌症患者中检测到的免疫反应的适当性以及通过免疫疗法对这些恢复的潜在增强。传统上将外周淋巴细胞视为生物学活性有限的短活细胞,但循环淋巴细胞池非常清楚地被大量的淋巴细胞池组成,由各种起源,寿命,寿命,良好的结构特征,良好的结构特征和介导的免疫响应的细胞组成。免疫机制可能会阻止Ehrlich在世纪之交(18)首次提出的潜在恶性细胞的发展,这是这种对淋巴细胞重新兴趣的最显着产物之一。由Thomas(80)和Burnet(12)提出的免疫学监测的概念表明,长期活着的脊椎动物中经常降低表面抗原的肿瘤细胞的小数量,这些细胞被宿主的细胞免疫系统识别为外国,并通过免疫机制消除了这些细胞。有力的证据证明了肿瘤转移的假设伴随着生化过程的改变,并且通过我们的小组成员充分提供了新表面抗原的出现(92)。在此部分中,我们将讨论证据表明,含有肿瘤的宿主可以识别并应对这些新塑性变化。我们将考虑毫无努力的某些方面,在癌症患者中检测到的免疫反应的适当性以及通过免疫疗法对这些恢复的潜在增强。与我们的收费保持一致,这些评论大部分将仅限于考虑T淋巴细胞介导的免疫反应的考虑。临床证据表明,免疫机制在癌症的控制中可能起作用,来自多种来源,其中大多数表明患有抑郁症或无效免疫监视的患者的癌症发生率更高。在化学之前,恶性疾病患者经常表现出多种免疫缺陷(72)。可以证明免疫系统小于最佳(12),在极端的癌症发生率也很高。有人提出,在早期生命中,发育中的和未刺激的免疫系统通过环境中的“强”和“弱”抗原接受了大量的抗原刺激。
回想起来,最近几年让我学会了从新的、有价值的角度看待我的工作、我自己和他人。我坚信这将对我未来的职业和个人发展产生持久的积极影响。这要归功于那些我要表示真挚感谢的人。Dieter Kranzlmüller 教授,感谢他在慕尼黑大学指导我的论文,并从一开始就在正确的时间提供正确的问题和答案。Rüdiger Schmidt 教授,感谢他随时可以审阅我的论文,他详细而深思熟虑的评论以及鼓舞人心的讨论。Benjamin Todd 博士,感谢他让我自由地追求我的目标,在需要时提供必要的支持,并在需要时捍卫我的利益。您的贡献是让这三年成为一段有益而有趣的旅程的最大贡献。Andreas Müller 教授,在办公时间之外进行鼓舞人心的讨论和坚定的支持。Jan Uythoven 和 Andrea Apollonio,在可靠性和可用性研究工作组中进行卓有成效的合作。我的同事 David Nisbet、Yves Thurel、Slawosz Uznanski、Thomas Cartier-Michaud、Volker Schramm、Arto Niemi、Jochen Schwenk、Christophe Martin、Raul Murillo Garcia、Konstantinos Papastigerou 和整个 CCE 部门,分享他们的专业知识和意见,帮助我在高效而友好的氛围中进一步发展我的想法和方法。德国博士生项目、欧洲核子研究中心未来环形对撞机研究提供并资助了这个有趣的研究项目,Jean Paul Burnet 领导的 TE-EPC 小组在令人信服的环境中主持了我的研究。最后,我要感谢我的父母和姐姐,即使我在这个雄心勃勃的项目中彻底失败了,他们也给了我信心。简而言之,感谢你们让我记住了博士宇宙之外的许多重要事物。感谢我了不起的朋友们,让外面的博士宇宙变得尽可能有趣和令人兴奋。
Behring,E。和Kitasato,S。(1890)。Uber das Zustandekommen der Diphtherie-Immunitat和tetanus-immunitat bei thieren。dtsch Med Wochenschr 49,1113–1114。Burnet,F.M。 (1957)。 使用克隆选择的概念对杰恩的抗体产生理论进行了修改。 奥斯特。 JOL。 Sci。 20,67–69。 CASE,C.L。和Chung,K.T。 (1997)。 Montagu和Jenner:反对天花的运动。 SIM新闻47,58-60。 Davies,D.R。和Chacko,S。(1993)。 抗体结构。 ACC。 化学。 res。 26,421–427。 Edelman,G.M。 (1959)。 γ-球蛋白的解离。 am。 化学。 Soc。 81,3155–3156。 Inbar,D。,Hochman,J。和Givol,D。(1972)。 在重链和轻质链的可变部分内的抗体组合位点的定位。 proc。 natl。 学院。 SCI。 美国69,2659–2662。 Engvall,E。&Perlmann,P。酶联免疫吸附测定法(ELISA)免疫球蛋白G.免疫化学的定量测定8,871–874(1971)。 Jenner,E。(1798)。 “对Variole疫苗或Cow-Pox的原因和影响的调查,1798”。 针对天花Köhler,G。和Milstein,C。的疫苗接种(1975)。 融合细胞的连续培养物,分泌预定义特异性的抗体。 自然256,495–497。 Miller,R。A.等。 N. Engl。 J. Med。 J.Burnet,F.M。(1957)。使用克隆选择的概念对杰恩的抗体产生理论进行了修改。奥斯特。JOL。 Sci。 20,67–69。 CASE,C.L。和Chung,K.T。 (1997)。 Montagu和Jenner:反对天花的运动。 SIM新闻47,58-60。 Davies,D.R。和Chacko,S。(1993)。 抗体结构。 ACC。 化学。 res。 26,421–427。 Edelman,G.M。 (1959)。 γ-球蛋白的解离。 am。 化学。 Soc。 81,3155–3156。 Inbar,D。,Hochman,J。和Givol,D。(1972)。 在重链和轻质链的可变部分内的抗体组合位点的定位。 proc。 natl。 学院。 SCI。 美国69,2659–2662。 Engvall,E。&Perlmann,P。酶联免疫吸附测定法(ELISA)免疫球蛋白G.免疫化学的定量测定8,871–874(1971)。 Jenner,E。(1798)。 “对Variole疫苗或Cow-Pox的原因和影响的调查,1798”。 针对天花Köhler,G。和Milstein,C。的疫苗接种(1975)。 融合细胞的连续培养物,分泌预定义特异性的抗体。 自然256,495–497。 Miller,R。A.等。 N. Engl。 J. Med。 J.JOL。Sci。20,67–69。CASE,C.L。和Chung,K.T。 (1997)。 Montagu和Jenner:反对天花的运动。 SIM新闻47,58-60。 Davies,D.R。和Chacko,S。(1993)。 抗体结构。 ACC。 化学。 res。 26,421–427。 Edelman,G.M。 (1959)。 γ-球蛋白的解离。 am。 化学。 Soc。 81,3155–3156。 Inbar,D。,Hochman,J。和Givol,D。(1972)。 在重链和轻质链的可变部分内的抗体组合位点的定位。 proc。 natl。 学院。 SCI。 美国69,2659–2662。 Engvall,E。&Perlmann,P。酶联免疫吸附测定法(ELISA)免疫球蛋白G.免疫化学的定量测定8,871–874(1971)。 Jenner,E。(1798)。 “对Variole疫苗或Cow-Pox的原因和影响的调查,1798”。 针对天花Köhler,G。和Milstein,C。的疫苗接种(1975)。 融合细胞的连续培养物,分泌预定义特异性的抗体。 自然256,495–497。 Miller,R。A.等。 N. Engl。 J. Med。 J.CASE,C.L。和Chung,K.T。(1997)。Montagu和Jenner:反对天花的运动。 SIM新闻47,58-60。 Davies,D.R。和Chacko,S。(1993)。 抗体结构。 ACC。 化学。 res。 26,421–427。 Edelman,G.M。 (1959)。 γ-球蛋白的解离。 am。 化学。 Soc。 81,3155–3156。 Inbar,D。,Hochman,J。和Givol,D。(1972)。 在重链和轻质链的可变部分内的抗体组合位点的定位。 proc。 natl。 学院。 SCI。 美国69,2659–2662。 Engvall,E。&Perlmann,P。酶联免疫吸附测定法(ELISA)免疫球蛋白G.免疫化学的定量测定8,871–874(1971)。 Jenner,E。(1798)。 “对Variole疫苗或Cow-Pox的原因和影响的调查,1798”。 针对天花Köhler,G。和Milstein,C。的疫苗接种(1975)。 融合细胞的连续培养物,分泌预定义特异性的抗体。 自然256,495–497。 Miller,R。A.等。 N. Engl。 J. Med。 J.Montagu和Jenner:反对天花的运动。SIM新闻47,58-60。Davies,D.R。和Chacko,S。(1993)。抗体结构。ACC。 化学。 res。 26,421–427。 Edelman,G.M。 (1959)。 γ-球蛋白的解离。 am。 化学。 Soc。 81,3155–3156。 Inbar,D。,Hochman,J。和Givol,D。(1972)。 在重链和轻质链的可变部分内的抗体组合位点的定位。 proc。 natl。 学院。 SCI。 美国69,2659–2662。 Engvall,E。&Perlmann,P。酶联免疫吸附测定法(ELISA)免疫球蛋白G.免疫化学的定量测定8,871–874(1971)。 Jenner,E。(1798)。 “对Variole疫苗或Cow-Pox的原因和影响的调查,1798”。 针对天花Köhler,G。和Milstein,C。的疫苗接种(1975)。 融合细胞的连续培养物,分泌预定义特异性的抗体。 自然256,495–497。 Miller,R。A.等。 N. Engl。 J. Med。 J.ACC。化学。res。26,421–427。Edelman,G.M。 (1959)。 γ-球蛋白的解离。 am。 化学。 Soc。 81,3155–3156。 Inbar,D。,Hochman,J。和Givol,D。(1972)。 在重链和轻质链的可变部分内的抗体组合位点的定位。 proc。 natl。 学院。 SCI。 美国69,2659–2662。 Engvall,E。&Perlmann,P。酶联免疫吸附测定法(ELISA)免疫球蛋白G.免疫化学的定量测定8,871–874(1971)。 Jenner,E。(1798)。 “对Variole疫苗或Cow-Pox的原因和影响的调查,1798”。 针对天花Köhler,G。和Milstein,C。的疫苗接种(1975)。 融合细胞的连续培养物,分泌预定义特异性的抗体。 自然256,495–497。 Miller,R。A.等。 N. Engl。 J. Med。 J.Edelman,G.M。(1959)。γ-球蛋白的解离。am。化学。Soc。81,3155–3156。Inbar,D。,Hochman,J。和Givol,D。(1972)。 在重链和轻质链的可变部分内的抗体组合位点的定位。 proc。 natl。 学院。 SCI。 美国69,2659–2662。 Engvall,E。&Perlmann,P。酶联免疫吸附测定法(ELISA)免疫球蛋白G.免疫化学的定量测定8,871–874(1971)。 Jenner,E。(1798)。 “对Variole疫苗或Cow-Pox的原因和影响的调查,1798”。 针对天花Köhler,G。和Milstein,C。的疫苗接种(1975)。 融合细胞的连续培养物,分泌预定义特异性的抗体。 自然256,495–497。 Miller,R。A.等。 N. Engl。 J. Med。 J.Inbar,D。,Hochman,J。和Givol,D。(1972)。在重链和轻质链的可变部分内的抗体组合位点的定位。proc。natl。学院。SCI。 美国69,2659–2662。 Engvall,E。&Perlmann,P。酶联免疫吸附测定法(ELISA)免疫球蛋白G.免疫化学的定量测定8,871–874(1971)。 Jenner,E。(1798)。 “对Variole疫苗或Cow-Pox的原因和影响的调查,1798”。 针对天花Köhler,G。和Milstein,C。的疫苗接种(1975)。 融合细胞的连续培养物,分泌预定义特异性的抗体。 自然256,495–497。 Miller,R。A.等。 N. Engl。 J. Med。 J.SCI。美国69,2659–2662。 Engvall,E。&Perlmann,P。酶联免疫吸附测定法(ELISA)免疫球蛋白G.免疫化学的定量测定8,871–874(1971)。 Jenner,E。(1798)。 “对Variole疫苗或Cow-Pox的原因和影响的调查,1798”。 针对天花Köhler,G。和Milstein,C。的疫苗接种(1975)。 融合细胞的连续培养物,分泌预定义特异性的抗体。 自然256,495–497。 Miller,R。A.等。 N. Engl。 J. Med。 J.美国69,2659–2662。Engvall,E。&Perlmann,P。酶联免疫吸附测定法(ELISA)免疫球蛋白G.免疫化学的定量测定8,871–874(1971)。Jenner,E。(1798)。 “对Variole疫苗或Cow-Pox的原因和影响的调查,1798”。 针对天花Köhler,G。和Milstein,C。的疫苗接种(1975)。 融合细胞的连续培养物,分泌预定义特异性的抗体。 自然256,495–497。 Miller,R。A.等。 N. Engl。 J. Med。 J.Jenner,E。(1798)。“对Variole疫苗或Cow-Pox的原因和影响的调查,1798”。针对天花Köhler,G。和Milstein,C。的疫苗接种(1975)。 融合细胞的连续培养物,分泌预定义特异性的抗体。 自然256,495–497。 Miller,R。A.等。 N. Engl。 J. Med。 J.针对天花Köhler,G。和Milstein,C。的疫苗接种(1975)。融合细胞的连续培养物,分泌预定义特异性的抗体。自然256,495–497。Miller,R。A.等。 N. Engl。 J. Med。 J.Miller,R。A.等。N. Engl。J. Med。 J.J. Med。J.用单克隆抗替代型抗体治疗B细胞淋巴瘤。306,517–522(1982)。Pauling,L。(1940)。 抗体形成的结构和过程的理论。 am。 化学。 Soc。 62,2643–2657。 波特,R.R。 (1959)。 用晶状蛋白酶的兔Y-球蛋白和抗体的水解。 生物化学。 J. 73,119–126。 Riedel,S。(2005)。 爱德华·詹纳(Edward Jenner)和天花和疫苗接种的历史。 Proc(Bayl Univ Med Cent)18,21-25。 Saphire,E.O。 等。 中和对HIV-1的中和人IgG的晶体结构:用于疫苗设计的模板。 科学。 293,1155-1159(2001)Silverton,E。W.等。 完整的人免疫球蛋白的三维结构。 proc。 NATL Acad。 SCI。 美国74,5140–5144(1977)https://www.nature.com/articles/d42859-018-018-00024-6 https://wwwww.reuters.com/article/article/article/article/article/us-health-health-coronavirus-lealth-coronavirus-elonavirus-elonavirus-elili--fda-irilly-lilly-fda-iduskbbbbbbbbn275lPauling,L。(1940)。抗体形成的结构和过程的理论。am。化学。Soc。62,2643–2657。波特,R.R。(1959)。用晶状蛋白酶的兔Y-球蛋白和抗体的水解。生物化学。J.73,119–126。Riedel,S。(2005)。爱德华·詹纳(Edward Jenner)和天花和疫苗接种的历史。Proc(Bayl Univ Med Cent)18,21-25。Saphire,E.O。 等。 中和对HIV-1的中和人IgG的晶体结构:用于疫苗设计的模板。 科学。 293,1155-1159(2001)Silverton,E。W.等。 完整的人免疫球蛋白的三维结构。 proc。 NATL Acad。 SCI。 美国74,5140–5144(1977)https://www.nature.com/articles/d42859-018-018-00024-6 https://wwwww.reuters.com/article/article/article/article/article/us-health-health-coronavirus-lealth-coronavirus-elonavirus-elonavirus-elili--fda-irilly-lilly-fda-iduskbbbbbbbbn275lSaphire,E.O。等。中和对HIV-1的中和人IgG的晶体结构:用于疫苗设计的模板。科学。293,1155-1159(2001)Silverton,E。W.等。完整的人免疫球蛋白的三维结构。proc。NATL Acad。 SCI。 美国74,5140–5144(1977)https://www.nature.com/articles/d42859-018-018-00024-6 https://wwwww.reuters.com/article/article/article/article/article/us-health-health-coronavirus-lealth-coronavirus-elonavirus-elonavirus-elili--fda-irilly-lilly-fda-iduskbbbbbbbbn275lNATL Acad。SCI。 美国74,5140–5144(1977)https://www.nature.com/articles/d42859-018-018-00024-6 https://wwwww.reuters.com/article/article/article/article/article/us-health-health-coronavirus-lealth-coronavirus-elonavirus-elonavirus-elili--fda-irilly-lilly-fda-iduskbbbbbbbbn275lSCI。美国74,5140–5144(1977)https://www.nature.com/articles/d42859-018-018-00024-6 https://wwwww.reuters.com/article/article/article/article/article/us-health-health-coronavirus-lealth-coronavirus-elonavirus-elonavirus-elili--fda-irilly-lilly-fda-iduskbbbbbbbbn275l
胸腺实验和临床研究。由G. E. W. Wolstenholme和Ruth Porter编辑。(CIBA基金会符号。)pp。XIII+538。(伦敦:J。和A. Churchill Ltd.,1966年。)80年代。,百里香功能的真实本质一直是生物学中最有趣的奥秘之一。建议的角色范围从肺部收缩期间的胸部填充到释放液体以减轻血液的作用,除了在本世纪的前50年中对我们的知识的一两个值得注意的贡献,几乎没有证据表明哪些证据很少能以更好的理论为基础。缺乏症现在变得良好,并且已经收集了大量信息,尤其是在过去五年中。在本卷中是二十个贡献,涵盖了相当广泛的过程,其中胸腺似乎发挥了领先作用。在1965年8月在墨尔本安排的会议上阅读了这些论文,以纪念Macfarlane Burnet爵士在退休后担任Walter和Eliza Hall医学研究所的主任。适当地,所有贡献都是高水平的,从它们以及遵循非常全面的调查的讨论中,就出现了对腺体的了解和当前思想趋势,这些思想的趋势使人们积极从事研究。在过去的几年中,在J. F. A. P. Miller的工作之后,人们的注意力主要集中在胸腺在免疫中的作用以及淋巴细胞起源,功能和命运的相关 - 不可分割的问题。Miller对研讨会的贡献强调了胸腺在免疫能力发展中发挥作用的核心部分,并表明主要功能可能是提供淋巴细胞或前体细胞的提供,以及诱发能力的因子的阐述。由S. L. clark的电子显微镜研究提供了胸腺激素产生的证据,但是D. Metcalf提供了令人信服的证据,以防止胸腺淋巴细胞向颈周围淋巴样组织进行任何大规模迁移,就像先前认为发生的那样。J. L. Gowans及其同事的优雅实验表明,淋巴细胞的抗体产生与抗原的表现方式之间的密切关联。巨噬细胞在归纳过程中可能是必不可少的中介。从此和其他工作中出现的一个重要主题,包括在胸腺和淋巴细胞的Cmbryogencs上的作品,是存在两个功能和发育单独的细胞系统的可能性,一种负责抗体形成,另一种用于移植反应的介导。到目前为止,他只直接直接实验证据证明了两个这样的系统的存在来自于鸡的织物的作品。有报道,但是,在墨尔本会议之后,新生胸腺切除动物产生抗体的能力