1 Scope ........................................................................................................................................................ 6
1 Scope ........................................................................................................................................................ 6
摘要:如今,设计和采用可持续和绿色的运输系统令人兴趣。欧盟委员会和欧盟不同的国家正在制定计划和计划(但也提供资源)在2030年之前的城市和运输中脱碳。在本文中,讲述了布雷斯西亚市的案例研究,这是一个位于意大利北部的约20万居民的城市。特别是,假设替换了特定管线的整个压缩天然气(CNG)供电的总线电池,则进行了初步的操作和财务可行性研究。考虑的两个替代方法是电池电动总线(BEB)和燃料电池电动总线(FCEB)。为了比较和评估这两种替代方案,即三种替代方案(BEB,FCEB和当前解决方案CNGB)的特定经济参数:CAPEX(资本支出)和OPEX(运营支出)。这使我们能够确定三个年金(2022、2025和2030)的TCO(总拥有成本)和TCRO(所有权的总成本和所有权成本)。对于BEB替代方案,TCO和TCRO值在0.58/km欧元和0.91/km之间。在FCEB解决方案的情况下,TCO和TCRO的值在1.75欧元/km和2.15欧元之间。考虑到当前的CNGB解决方案,TCO和TCRO值范围在1.43/km和1.51欧元之间。
图片:新的Xrange TM电池组旨在为各种重型车辆提供动力,从学校和运输巴士,中型卡车到采矿和建筑应用。关于弗洛伊德伯格电子驱动系统弗洛伊德伯格电子驱动系统是全球用于重型应用的排放中性能源系统的领先供应商之一。凭借其在电池和燃料电池技术方面的经验和专业知识,该公司提供了量身定制的解决方案,特别是组合系统,以实现可持续和经济的电子运输。拥有800多名员工,弗洛伊登伯格电子企业系统从应用程序开发到生产,调试和服务支持其客户。该公司是全球弗洛不会集团的一部分,该集团拥有四个业务领域:密封和振动控制技术,无编织和过滤,家用产品以及专业等。在2022年,该集团的销售额超过110亿欧元,并在大约60个国家 /地区雇用了50,000多名员工。更多信息可在www.freudenberg.com上找到。。Contact Freudenberg e-Power Systems Julia Bachmeier, Vice President Corporate Communications Bayerwaldstrasse 3 81737 München Germany Phone: +49 89 217040 305 E-Mail: julia.bachmeier@freudenberg-eps.com www.freudenberg-eps.com Freudenberg e-Power Systems Desiree Goldstein,公关和内部通信经理拜耳特斯特郡3 81737穆镇德国电话:+49 89 217040 401电子邮件:desiree.goldstein@freudenberg-eps.com www.freudenberg-eps.com www.freudenberg-eps.com
处置:在用途生命的结束时,为电力汽车制造商和供应商建立法律义务。示例:各国可以在竞标过程中考虑环境和社会标准,以了解其供应商及其在世界另一部分的潜在环境和社会影响。
摘要:电池状态对于安全可靠的新能量车辆非常重要。电池状态的估计已成为电动巴士和运输安全管理开发的研究热点。本文总结了电池状态估计任务,比较和分析三种类型的数据源的基本工作流程,并分析了电池状态估算的三种类型的数据源的优势和缺点,总结了用于估算电池电池状态的三种主要模型的特性和研究进度,例如机器学习模型,深度学习模型,以及杂交模型,以及杂种模型以及开发趋势方法。可以得出结论,有许多数据源用于电池状态估计,并且在自然驾驶条件下的机载传感器数据具有客观性和真实性的特征,使其成为准确电池状态估算的主要数据源;人工神经网络促进了深度学习方法的快速发展,并且深度学习模型越来越多地应用于电池状态估计中,证明了准确性和鲁棒性的优势;混合模型通过全面利用不同类型的模型的特性来更准确,可靠地估算电池状态,这是电池状态估计方法的重要开发趋势。更高的精度,实时性能和鲁棒性是电池状态估算方法的开发目标。
交通部正与业界合作,在我们的公交网络中实现这一变革。这包括与能源、制造业、交通运营、融资和教育领域的领导者合作。作为第一个大规模推出零排放公交计划的州,新南威尔士州正围绕这一快速发展的全球计划,在培养本地技能和就业方面处于领先地位。
概述公共交通部门中电池电力汽车的部署在减少运输的排气排放方面起着重要作用[1]。在过去的十年中,技术的引入迅速加速,受国家能源政策的影响,并受环境要求的驱动,而不是商业考虑。但是,目前有各种障碍,可以广泛采用电动巴士。一个重大的挑战是电池的能量密度相对较低,这与公交车上的价格问题直接相关[2]。电池技术的最新发展提高了电动巴士的潜力,成为公共交通的可行解决方案。本出版物正在构建总拥有成本(TCO)模型,包括对资本支出和OPEX的分析,并评估一个小型中间大小的城市的公共交通,Offenburg是否适合过渡到电动公交车。估计成本的未来发展,并将进行基于学习曲线的投影。本研究打算通过基于先前的研究引入最新数据来介绍新的未来前景[3]。通过新的TCO结果,我们想找出现有柴油巴士和当前电动巴士之间的运营成本差异,并研究未来的前景,以使小型和中型城市中电动巴士的经济可行性。
电动公交车引起了印度公共交通运营商的关注,因为它们能够解决传统燃料公交车造成的温室气体排放增加以及空气和噪音污染问题。加快采用和制造(混合动力和)电动汽车 (FAME) II 计划预计到 2024 年部署 7,000 辆电动公交车。为了实现无缝过渡,高效的充电基础设施必不可少。目前,车库插电式充电是印度最常见的电动公交车充电方式。虽然它因资本成本低和使用低功率充电器而受到青睐——也因为它在非高峰时段耗电——但这项技术也面临着一些挑战。例如,它只能安装在几个指定位置,需要较长的充电时间,引起高里程焦虑,并且需要专用空间。因此,一些制造商、运营商和决策者都热衷于探索其他充电替代方案。