研究了 C54 Ti(Si, -,Ge,,) 薄膜与 Si, -XGe, 衬底接触时的稳定性。C54 Ti(Si, -,Ge,,j) 薄膜由 Ti-Sii-,Ge, 固相金属化反应形成。结果表明,最初形成的 C54 Ti(Si, -,,Ge,,) 的 Ge 指数 y 与 Si, -XGeX 衬底的 Ge 指数 x 大致相同(即 yx)。C54 钛锗硅化物形成后,Si, -XGeX 衬底中的 Si 和 Ge 继续扩散到 C54 层中,大概是通过晶格和晶粒边界扩散。扩散到 C54 晶格中的部分 Si 取代了 C54 晶格上的 Ge,C54 Ti(Si, -,GeJZ 的 Ge 指数降低(即 yx)。这种偏析和沉淀增强了C54钛锗硅化物薄膜的团聚(即较低的团聚温度)。观察到可以使用快速热退火技术来减少退火时间并导致Ge偏析的减少。0 199.S美国物理学会。
研究了Ti和Co与Si,_。,GE,底物反应的形成和稳定性。对于Ti/Sige系统,当C.54 Ti(Si,YGE,)2层形式时,GE索引>'最初与Si, - ,GE,基板的GE索引相同(即.v = x)。之后,从底物从底物通过晶格和晶粒结构扩散延伸到C54层中。散布到C54晶格中的一些Si取代了晶格中的GE,而C54 Ti(Si,_ ,, ge ,,)z变得富含硅(即y 对于CO/SIGE系统,确定富含硅的CO(SIL _,ge,)层以-400“ C分叉。 随着退火温度的升高,反应层变得更加富集。 对于这两种材料系统,富含GE的Si, - :GE; (z> x)观察到岛屿。 发现,对于Co/Si,_。,GE,反应层由COSI组成,而Si,_:Gez高温退火后(= 700“ C)。 我们建议这些过程是由C54 Ti(Si, - ,GE,)的晶体能量降低,Ti/Sige系统中的相位和CO(SI, - - ,GE,)驱动的。 co/sige系统中的阶段,伴随GE用Si替换。对于CO/SIGE系统,确定富含硅的CO(SIL _,ge,)层以-400“ C分叉。随着退火温度的升高,反应层变得更加富集。对于这两种材料系统,富含GE的Si, - :GE; (z> x)观察到岛屿。发现,对于Co/Si,_。,GE,反应层由COSI组成,而Si,_:Gez高温退火后(= 700“ C)。我们建议这些过程是由C54 Ti(Si, - ,GE,)的晶体能量降低,Ti/Sige系统中的相位和CO(SI, - - ,GE,)co/sige系统中的阶段,伴随GE用Si替换。
摘要不仅在发达国家,而且在发展中国家中,对金融体系的参与也成为关注和努力的关键重点。它被认为是促进经济增长并降低贫困水平的有效工具。本研究的目标是调查有助于埃及经济扩张的因素,尤其是金融包容性。研究人员使用可能的模糊回归来研究金融包容性对埃及经济增长的影响,从2004年至2019年之间。他们的发现导致他们得出的结论是,金融包容与经济增长无关。该研究建议通过将改善金融包容性的问题放在经济和金融政策优先事项的最前沿,并发展金融体系的基础设施,并增强银行交易中的披露和透明度,从而更加关注根除财务文盲。JEL分类:C33,C54,F43,O11,P52。关键词:金融包容性,经济增长,可能的模糊回归。
本文研究了美国 2020 年和 2021 年通过并签署成为法律的三项主要财政计划中的经济影响支付(也称为刺激支票或复苏退税)。统计分析表明,这些一次性大额临时支付对个人可支配收入产生了很大影响,但季度回归和简单图表显示,它们几乎没有或根本没有增加消费,因此没有刺激经济。本文还表明,研究结果与一二十年前对其他财政计划进行的类似研究大致相同,并且与永久收入或生命周期假设的基本经济观点一致,即与更持久的变化相比,收入的暂时增加大部分被保存下来。关键词:经济影响支付、刺激支票、永久收入 JEL 代码:B22、C54、E62、E65 胡佛研究所经济学工作论文系列允许作者分发研究成果,供其他研究人员讨论和评论。工作论文反映的是作者的观点,而不是胡佛研究所的观点。
合成控制方法是一种数据驱动的方法,用于计算控制个体的反事实,以估计许多经验重要性的治疗效果。在规范实现中,这种加权是线性的,是供体池选择和处理的实体之间的协变量比较的关键方法论步骤,其合成控制取决于一定程度的主观判断。因此,当前方法在具有大型数据集的设置中可能不会发挥最佳性能,或者是通过供体池个体的非线性组合获得最佳合成控制的。本文提出了“机器控制”,基于自动化供体池选择的合成控制,通过插入算法选择,监督控制实体的灵活非线性加权的学习以及将歧管学习以数值确认合成控制是否确实类似于目标单位。机器控制方法得到了2017年劳动放松管制对巴西工人生产力的影响。与制定改革时的决策者期望相反,对工人的生产力没有明显影响。这个结果表明,在提高生产率水平以及经济福利方面面临着深远的挑战。JEL:B41,C32,C54,E24,J50,J83,O47。关键字:因果推理,合成控制,机器学习,劳动力改革,生产力。
C L1 平衡-不平衡线圈 33.7 34.1 33.8 12.5 12.8 13.5 L2 平衡-不平衡线圈 33.5 31.6 31.8 12.7 12.3 13.1 L31 扼流圈 43.8 46.1 45.0 29.4 30.3 30.4 L51 扼流圈 69.9 70.6 68.2 23.7 23.8 23.9 T21 传输脉冲 37.2 38.2 36.7 23.1 24.4 24.6 T32 传输脉冲 46.2 45.9 44.2 20.2 20.6 20.8 D1 桥式二极管 33.6 36.0 36.2 16.6 17.4 18.2 D2 LLD 34.2 37.3 36.2 15.3 17.5 17.8 D51~D52 SBD 48.2 43.1 40.8 20.7 18.9 18.8 D53~D54 SBD 55.3 51.8 50.0 24.2 23.0 23.2 Q1~Q2 MOS管 40.4 41.6 41.2 19.0 20.4 21.0 Q31~Q32 MOS管 45.8 45.8 45.0 25.0 25.2 25.3 SR1晶闸管 39.1 41.8 41.8 17.4 19.7 20.2 A102 芯片 IC 28.7 30.2 30.1 18.7 20.9 21.3 A152 芯片 IC 29.9 31.1 30.2 21.1 22.3 22.5 A351 芯片 IC 30.0 29.7 29.0 20.1 21.0 21.7 C12 电容量 19.4 20.3 19.7 11.2 12.5 12.8 C13 电容量 11.3 11.5 11.3 3.7 4.4 4.9 C51 电容量 33.5 34.2 32.5 13.8 14.4 14.8 C52 电容量23.1 23.7 23.0 11.0 12.0 12.1 C53 E.CAP。 24.3 24.2 23.8 11.2 11.8 11.8 C54 E CAP。 29.8 31.1 29.0 12.8 13.3 13.3
摘要近年来,极端冲击(例如自然灾害)的频率和强度都增加了。因此,许多城市经历了重大的经济损失。在极端冲击之后量化当地企业的经济成本对于灾难后评估和策划前计划很重要。通常,调查一直是量化灾难对企业造成的损害的主要数据来源。但是,调查通常会遭受高昂的损失,其实施可能需要很长时间。他们在观测和可伸缩性的局限性中也遭受了时空的稀疏性。最近,大规模的人类流动性数据(例如,手机GPS)已被用来观察和分析以空前的时空粒度和规模的方式观察和分析人类流动性模式。在这项工作中,我们使用从手机收集的位置数据来估算和分析飓风对商业绩效的因果影响。为了量化灾难的因果影响,我们使用贝叶斯结构时间序列模型来预测受影响企业的反事实表现(如果没有发生灾难,该怎么办?),它可以作为协变量以外的其他业务的绩效。,我们通过量化玛丽亚飓风后,在波多黎各的9个类别的635家企业的韧性来测试我们的方法。此外,分层贝叶斯模型用于揭示业务特征(例如位置和类别)对这些业务的长期弹性的影响。本研究提出了一种量化业务弹性的新颖,更有效的方法,可以帮助决策者进行灾难准备和救济过程。关键字:灾难弹性,手机,人类移动性,因果推理JEL分类:Q54,C54,J6
C L1 平衡-不平衡线圈 33.7 34.1 33.8 12.5 12.8 13.5 L2 平衡-不平衡线圈 33.5 31.6 31.8 12.7 12.3 13.1 L31 扼流圈 43.8 46.1 45.0 29.4 30.3 30.4 L51 扼流圈 69.9 70.6 68.2 23.7 23.8 23.9 T21 传输脉冲 37.2 38.2 36.7 23.1 24.4 24.6 T32 传输脉冲 46.2 45.9 44.2 20.2 20.6 20.8 D1 桥式二极管 33.6 36.0 36.2 16.6 17.4 18.2 D2 LLD 34.2 37.3 36.2 15.3 17.5 17.8 D51~D52 SBD 48.2 43.1 40.8 20.7 18.9 18.8 D53~D54 SBD 55.3 51.8 50.0 24.2 23.0 23.2 Q1~Q2 MOS管 40.4 41.6 41.2 19.0 20.4 21.0 Q31~Q32 MOS管 45.8 45.8 45.0 25.0 25.2 25.3 SR1晶闸管 39.1 41.8 41.8 17.4 19.7 20.2 A102 芯片 IC 28.7 30.2 30.1 18.7 20.9 21.3 A152 芯片 IC 29.9 31.1 30.2 21.1 22.3 22.5 A351 芯片 IC 30.0 29.7 29.0 20.1 21.0 21.7 C12 电容量 19.4 20.3 19.7 11.2 12.5 12.8 C13 电容量 11.3 11.5 11.3 3.7 4.4 4.9 C51 电容量 33.5 34.2 32.5 13.8 14.4 14.8 C52 电容量23.1 23.7 23.0 11.0 12.0 12.1 C53 E.CAP。 24.3 24.2 23.8 11.2 11.8 11.8 C54 E CAP。 29.8 31.1 29.0 12.8 13.3 13.3
C L1 平衡-不平衡线圈 33.7 34.1 33.8 12.5 12.8 13.5 L2 平衡-不平衡线圈 33.5 31.6 31.8 12.7 12.3 13.1 L31 扼流圈 43.8 46.1 45.0 29.4 30.3 30.4 L51 扼流圈 69.9 70.6 68.2 23.7 23.8 23.9 T21 传输脉冲 37.2 38.2 36.7 23.1 24.4 24.6 T32 传输脉冲 46.2 45.9 44.2 20.2 20.6 20.8 D1 桥式二极管 33.6 36.0 36.2 16.6 17.4 18.2 D2 LLD 34.2 37.3 36.2 15.3 17.5 17.8 D51~D52 SBD 48.2 43.1 40.8 20.7 18.9 18.8 D53~D54 SBD 55.3 51.8 50.0 24.2 23.0 23.2 Q1~Q2 MOS管 40.4 41.6 41.2 19.0 20.4 21.0 Q31~Q32 MOS管 45.8 45.8 45.0 25.0 25.2 25.3 SR1晶闸管 39.1 41.8 41.8 17.4 19.7 20.2 A102 芯片 IC 28.7 30.2 30.1 18.7 20.9 21.3 A152 芯片 IC 29.9 31.1 30.2 21.1 22.3 22.5 A351 芯片 IC 30.0 29.7 29.0 20.1 21.0 21.7 C12 电容量 19.4 20.3 19.7 11.2 12.5 12.8 C13 电容量 11.3 11.5 11.3 3.7 4.4 4.9 C51 电容量 33.5 34.2 32.5 13.8 14.4 14.8 C52 电容量23.1 23.7 23.0 11.0 12.0 12.1 C53 E.CAP。 24.3 24.2 23.8 11.2 11.8 11.8 C54 E CAP。 29.8 31.1 29.0 12.8 13.3 13.3
C L1 平衡-不平衡线圈 33.7 34.1 33.8 12.5 12.8 13.5 L2 平衡-不平衡线圈 33.5 31.6 31.8 12.7 12.3 13.1 L31 扼流圈 43.8 46.1 45.0 29.4 30.3 30.4 L51 扼流圈 69.9 70.6 68.2 23.7 23.8 23.9 T21 传输脉冲 37.2 38.2 36.7 23.1 24.4 24.6 T32 传输脉冲 46.2 45.9 44.2 20.2 20.6 20.8 D1 桥式二极管 33.6 36.0 36.2 16.6 17.4 18.2 D2 LLD 34.2 37.3 36.2 15.3 17.5 17.8 D51~D52 SBD 48.2 43.1 40.8 20.7 18.9 18.8 D53~D54 SBD 55.3 51.8 50.0 24.2 23.0 23.2 Q1~Q2 MOS管 40.4 41.6 41.2 19.0 20.4 21.0 Q31~Q32 MOS管 45.8 45.8 45.0 25.0 25.2 25.3 SR1晶闸管 39.1 41.8 41.8 17.4 19.7 20.2 A102 芯片 IC 28.7 30.2 30.1 18.7 20.9 21.3 A152 芯片 IC 29.9 31.1 30.2 21.1 22.3 22.5 A351 芯片 IC 30.0 29.7 29.0 20.1 21.0 21.7 C12 电容量 19.4 20.3 19.7 11.2 12.5 12.8 C13 电容量 11.3 11.5 11.3 3.7 4.4 4.9 C51 电容量 33.5 34.2 32.5 13.8 14.4 14.8 C52 电容量23.1 23.7 23.0 11.0 12.0 12.1 C53 E.CAP。 24.3 24.2 23.8 11.2 11.8 11.8 C54 E CAP。 29.8 31.1 29.0 12.8 13.3 13.3
