目的 颅内人脑记录通常使用无法区分单个神经元动作电位的记录系统。在这种情况下,无法通过功能电路内的位置来识别单个神经元。本文展示了在 CA3 和 CA1 细胞场内单独记录的海马神经元的定位验证。方法 在 23 名接受侵入性监测以识别癫痫发作灶的人类患者体内植入了大-微深层电极。通过位于海马内的大-微深层电极记录的细胞外动作电位波形来分离和识别单个神经元。使用 3T MRI 扫描对 23 名植入患者以及 46 名正常(即非癫痫)患者和 26 名有癫痫病史但没有深层电极放置史的患者的海马进行形态测量调查,从而提供海马沿典型植入轨迹的平均尺寸。根据记录电极位置、深部电极的立体定位与形态测量调查的对比以及术后 MRI,暂时确定其在 CA3 和 CA1 细胞场内的定位。根据波形和放电频率特征,将细胞选为候选 CA3 和 CA1 主要神经元,并通过功能连接测量确认其位于 CA3 至 CA1 神经投射通路内。结果互相关分析证实,近 80% 的假定 CA3 至 CA1 细胞对表现出与细胞间前馈连接相符的正相关,而只有 2.6% 表现出反馈(逆)连接。即使排除了同步和长延迟相关性,在总共 4070 对中的 1071 对(26%)中发现了 CA3-CA1 对之间的前馈相关性,这与已发表的动物研究中报告的 20%–25% 前馈 CA3-CA1 相关性相比更为有利。结论 本研究证明了在活体中记录人类大脑特定区域和子域神经元的能力。随着脑机接口和神经假体研究的不断扩展,有必要能够识别感兴趣的神经回路内的记录和刺激位点。
化合物具有良好的基础,因为它们具有多种优势。它们表现出可调的发射特性;因此,可以针对特定C应用定制发射光的颜色和强度。11 - 13这种可调节性是创建可以补充人类视觉敏感性的磷光器的关键特征,从而带来最佳的照明和显示质量。ca 3(vo 4)2(一种钒酸盐)具有一种结构结构,当用某些稀土离子掺杂时,可以定制以在可见光谱中发出光。14此功能使CA 3(VO 4)2成为需要绿色排放的引人注目的选择,例如在W-LED和显示技术中。15基于Ca 3(vo 4)2的磷光体的可调节性能源于其可调节的特性,从而能够以受控和有效的方式产生材料。发射白光二极管(LED)的发展在很大程度上取决于绿色发射磷。在发光活化剂中,TB 3+离子以其出色的量子产率,辐射纯度和稳定性而闻名。16,17用于研究绿色发光,最近将TB 3+离子添加到宿主材料中,例如BioCl和Sral 2 O 4。 18,19 4f 8 - 4f 7 5d 1转换负责TB 3+离子在(220-300)NM区域中显示的广泛激发属性。 令人惊讶的是,在此激发范围内还吸收了孤立的VO 4 3-部分,可能用作TB 3+离子敏化剂。 kuz'Icheva等。 在TM掺杂的Ca 3(vo 4)2中证明了光谱发光特性。 20 Voronina等。16,17用于研究绿色发光,最近将TB 3+离子添加到宿主材料中,例如BioCl和Sral 2 O 4。18,19 4f 8 - 4f 7 5d 1转换负责TB 3+离子在(220-300)NM区域中显示的广泛激发属性。令人惊讶的是,在此激发范围内还吸收了孤立的VO 4 3-部分,可能用作TB 3+离子敏化剂。kuz'Icheva等。在TM掺杂的Ca 3(vo 4)2中证明了光谱发光特性。20 Voronina等。描述Mn掺杂的Ca 3(vo 4)2,21
方法 受试者:C57bl/6雄性小鼠,其母鼠产后可使用跑轮(跑步者;n= 9)或使用标准笼子(久坐;n= 10)。 CUS 范式:将受试者分为对照组(跑步者,n= 4;久坐组,n= 5)和实验组(跑步者,n= 5;久坐组,n= 5),接受为期 21 天的 CUS 范式。 CUS 之后,对小鼠进行灌注,并对大脑进行 Golgi 染色 5,以研究背海马 CA3 区锥体神经元内的树突树枝状化。 重建:使用基于计算机的显微镜系统来描绘和重建神经元的轴突、树突、胞体和其他亚细胞成分,从而创建神经元的数字几何模型(n=152)。仅选择切片中间三分之一处具有完全染色和完整树突状体的相对分离的神经元进行分析。分析:使用 Neurolucida explorer 进行 Sholl 分析,该分析揭示了同心球中距胞体固定距离处出现的树突交叉点数量和树突长度。
本研究旨在确定CA3锥体神经元中的MTOR途径及其下游效应子P70S6K是否在胆碱能输入的调节下,以触发长期记忆的形成,类似于我们在CA1 Hippocampus中所证明的。我们使用成年Wistar大鼠的降低抑制作用测试进行了体内行为实验,以评估不同条件下的记忆形成。我们研究了雷帕霉素(雷帕霉素,雷帕霉素,一种MTORC1形成的抑制剂,Scopolamine,一种毒蕈碱受体拮抗剂或麦卡米胺,一种烟碱受体拮抗剂,对短期和长期记忆形成以及MTOR途径的功能。收购是在I.C.V. 30分钟后进行的。注射雷帕霉素。采集后进行1H,4H或24H进行召回测试。我们发现(1)CA3锥体神经元中的MTOR和P70S6K激活参与了长期记忆形成。 (2)雷帕霉素在4H时显着抑制MTOR和P70S6K激活,并在获取后长期记忆障碍; (3)Scopolamine损害了短期但不长期记忆,MTOR/p70s6k在1H激活时会提前增加,然后更长的时间稳定; (4)甲基胺和scopolamine共同给药在1H和4H时损害了短期记忆,并减少了Scopolamine诱导的MTOR/P70S6K激活时1H和4H激活的增加; (5)甲基胺和东pol碱治疗不会损害长期记忆的形成; (6)出乎意料的是,雷帕霉素增加了小胶质细胞中的MTORC2激活。我们的结果表明,在CA3锥体神经元中,mTOR/ p70s6k途径在胆碱能系统的调节下,并且参与了长期记忆编码,并且与海马 div> div>的CA3区域一致
简介:Centella Asiatica(CEA)是一种多年生的多年生爬虫,生长在属于Umbelliferae家族的潮湿土壤中。Centella Asiatica在阿育吠陀医学中用作脑补品,以增强神经功能,学习和记忆。这与正常动物的树突状树皮化的改善相关。但没有报道保护神经元免受压力诱导的神经变性的CEA叶提取物。因此,在本研究中,首先研究了CEA叶提取物对海马CA3神经元在约束应力小鼠中的神经保护作用,然后研究了应激和应激 + CEA提取物治疗的小鼠的康复作用。材料和方法:实验I:三个月大的白化病小鼠分为四组。组(i)是正常对照,第(ii)组为盐水对照,组(iii)是应力组,组(IV)是应力 + CEA处理组。组(III)小鼠在金属丝网限制器中胁迫6小时,持续6周。组(IV)小鼠也像组(III)一样受到压力,但在整个压力期内,它们接受了口服CEA叶子提取物。6周后,去除大脑,剖析海马并加工以进行高尔基体染色。海马神经元。使用sholl的同心圆方法来量化树突。实验II-康复实验 - 以与上述相同的方式进行,然后在最后一次提取物后的正常实验室条件下进行30天的康复。结果:即使在康复后30天后,在实验I和实验I II中,在实验I和实验II中,海马CA3神经元(III)中海马CA3神经元中的树突状刺,树突分支点和树突相交的数量显着减少。然而,在实验I和30天的康复后,受到约束应力的组(IV)显着增加,并用CEA叶子提取(实验II)。结论:CEA保护了海马CA3神经元免受应力诱导的神经变性的影响。CEA叶提取物在海马CA3神经元的树突状形态上永久变化(实验II)..
图1。利益区域。在感兴趣的大脑区域中CCO组织化学的采样框架。cINGUTUES CORTEX = CG,前Bic cortex = PL,fralimbic Cortex = il,背纹状体= std,std,Accumbens shell = accumbens core = accumbens core = accc,中间septum = ms,septum = ms,septum = ms septum = ls = ls,thalamus terodorsal terodorsal = ad teroforsal = ad,thalamus av avalamus avalamus avalamus avalamus avalamus avalamus antermus anteralial antermuls anteralial, Amygdala=BLA, Central Amygdala=CeA, Lateral Amygdala=LaA, field CA1 of hippocampus=CA1, field CA3 of hippocampus=CA3, Dentate Gyrus=DG, Supramammilar=SuM, Medial Medial Mammillary=MMM, Medial Lateral Mammillary=MML, Ventral Tegmental Area=VTA, Perirhinal cortex = prh,innorrinal cortex = ent。
摘要:在中枢神经系统中,一些特定的磷酸二酯酶(PDE)同工型调节与神经元可塑性有关的途径。积累的证据表明,PDE9可能是神经退行性疾病的有前途的治疗靶标。在当前的研究中,计算技术用于识别具有异黄酮脚手架的自然启发的PDE9抑制剂,从使用基于配体的方法的合成小分子数据库开始。此外,由分子动力学研究支持的对接研究使我们能够评估配体 - 靶络合物的特征。体外测定确认了计算结果,表明所选化合物抑制了纳摩尔范围内的酶。补充,我们评估了在器官海马切片中PDE9基因和蛋白质水平的表达,观察到暴露于Kainate(KA)后的增加。重要的是,PDE9抑制剂在器官海马切片中以剂量依赖的方式诱导的CA3损伤减少了CA3损伤。在一起,这些观察结果强烈支持鉴定出的性质启发的PDE9抑制剂的潜力,并表明这种分子可以代表有希望的铅化合物,以开发针对神经疾病的新型治疗工具。
海马是认知的大脑区域。人类SOX2转录因子中的突变会导致神经发育缺陷,导致智障和癫痫发作,以及海马发育不良。我们在小鼠中产生了一系列等位基因SOX2条件突变,在不同的发育阶段删除SOX2。SOX2晚期缺失(来自E11.5,通过Nestin-Cre)仅影响产后海马发育;早期的缺失(来自E10.5,EMX1-CRE)显着降低了齿状回(DG),最早的缺失(来自E9.5,FOXG1-CRE)会导致剧烈的异常,几乎完全没有DG。我们识别一组功能相互连接的基因(Gli3,Wnt3a,cxcr4,p73和tbr2),已知在海马胚胎发生中起着重要作用,在SOX2早期突变体中被下调,以及(Gli3和cxcr4)直接通过SOX2键入SOX2;它们的下调提供了导致缺陷的合理分子机制。对EMX1-CRE小鼠模型的电生理研究显示CA1和CA3区域的兴奋性传播改变了。对EMX1-CRE小鼠模型的电生理研究显示CA1和CA3区域的兴奋性传播改变了。
g-band振荡(GBO)是由快速加速的中间神经元(FSI)生成的,对于认知功能至关重要。异常,并且与认知障碍密切相关。但是,基本机制知之甚少。研究GBO在离体制备中的GBO由于需求量很高而具有挑战性,并且需要连续的牛至递送到组织。结果,通常会在非常年轻的动物或最大化氧气供应但妥协空间分辨率的实验设置中研究GBO。因此,对GBO在不同的大脑结构内部和不同动物中的脑组织之间的相互作用有一个深刻的了解。为了解决这些局限性,我们开发了一种新的方法,用于使用60频道的,穿孔的微电极阵列(PMEAS)研究成熟动物的离体海马切片中的GBO。pmeas增强了电生理记录中的氧气递送并增加了空间分辨率,从而实现了离散大脑结构内GBO同步的全面分析。我们发现,在海马内的神经途径上横断了Schaffer侧支,损害了CA1和CA3子场之间的GBO相干性。此外,我们通过研究表现出抑制性突触功能障碍的ANK3突变小鼠模型中的GBO相干性来验证我们的方法。我们发现,在这些突变小鼠的CA3子场中,GBO相干性保持完整,但在CA1子场内和之间受损。总体而言,我们的方法具有表征Animal模型的离体脑部切片中GBO的巨大潜力,从而增强了我们对精神疾病中网络功能障碍的理解。
简介:肠道菌群(MB),尽管体内Aβ的主要生产者之一,在生理条件下有助于维持健康的大脑。营养不良,MB中革兰氏阴性和革兰氏阴性细菌之间的功能障碍会增加Aβ产生,这有助于大脑中β斑块的积累,这是阿尔茨海默氏病(AD)的主要组织病理学标志。维持或恢复肠道成分的益生元和益生菌的给药可能代表了一种营养策略,以预防或减少AD Symptharyalysology。这项研究的目的是评估益生菌的治疗是否可以改变AD(APP/PS1小鼠)的转基因小鼠模型的海马CA1和CA3区域中神经变性的组织病理学迹象。海马是与AD有关的大脑区域之一。
