摘要 — 变分量子算法 (VQA) 依赖于参数化单元电路针对目标函数的迭代优化。由于量子机器噪声大且资源昂贵,因此必须适当选择 VQA 的假设,并使其初始参数尽可能接近最优值,因为这将改善并加速算法在量子设备上执行的精确收敛。这项工作通过提出 CAFQA(一种用于量子精度的 Clifford 假设)来解决寻找初始假设参数的问题。CAFQA 假设是一种仅使用 Clifford 门构建的硬件高效电路。在此假设中,通过经典模拟在 Clifford 参数空间中进行有效搜索来选择可调门的初始参数,从而产生合适的稳定器状态。结果表明,产生的稳定器状态始终等于或优于传统的经典初始化方法(例如 Hartree-Fock),即找到合适的计算基态,并且通常在量子设备上执行和探索之前就产生高精度估计。此外,该技术适用于经典计算,因为 a) 仅 Clifford 量子电路可以在多项式时间内进行经典精确模拟,以及 b) 离散 Clifford 空间虽然量子比特数量呈指数级增长,但可以通过贝叶斯优化进行有效搜索。对于变分量子特征求解器 (VQE) 任务(即估计多达 20 个量子比特的分子系统的基态能量),CAFQA 的 Clifford Ansatz 实现了接近 99% 的平均准确度,并且能够恢复高达 99.99% 的 Hartree-Fock 初始化分子相关能量。值得注意的是,该方法的可扩展性允许对具有挑战性的铬二聚体 (Cr 2 ) 进行初步的基态能量估计,其精度高于 Hartree-Fock 所达到的精度。CAFQA 还在优化任务上进行了评估,特别是高达 18 个量子比特的 MAXCUT 问题。借助 CAFQA 的高精度初始化,VQA 的收敛速度加快了 2.5 倍。总之,这项工作表明稳定器状态是变分算法的高精度假设初始化。此外,它突出了量子启发式经典技术作为 NISQ 时代及以后 VQA 的替代方案和支持方法的潜力。
摘要 随着量子计算从实验室的好奇心转变为技术现实,我们必须充分发挥其潜力,使不完善的量子技术在现实世界的应用中获得有意义的好处。实现这一愿景需要计算机架构师发挥关键作用,利用经典计算原理构建和促进混合计算生态系统,以获得实际的量子优势。首先,我将介绍我为构建这个混合生态系统所做的四项研究:经典应用转换、自适应噪声缓解、可扩展纠错和高效资源管理。其次,从经典应用转换的角度,我将介绍“CAFQA:变分量子算法的经典模拟引导程序”,它通过使用贝叶斯优化有效地搜索量子空间中可经典模拟的部分,从而实现 VQA 的精确经典初始化。CAFQA 恢复了之前最先进的经典初始化中丢失的 99.99% 的准确度,平均提高了 56 倍。第三,从可扩展纠错重点出发,我将介绍“Clique:优于最坏情况的量子纠错解码”,其中提出了用于低温量子系统的 Clique QEC 解码器。Clique 是一种轻量级低温解码器,用于解码和纠正常见的琐碎错误,因此只有罕见的复杂错误在低温制冷机外处理。Clique 消除了 90-99% 以上的低温制冷机 I/O 解码带宽,同时支持超过一百万个物理量子比特。最后,我将概述其他之前和正在进行的工作,以及我对实际量子优势的未来研究愿景。传记 Gokul Subramanian Ravi 是芝加哥大学 2020 年 NSF CI 研究员博士后学者,由 Fred Chong 教授指导。他的研究针对量子计算架构和系统,主要研究量子和经典计算交叉的主题。他于 2020 年获得威斯康星大学麦迪逊分校计算机架构博士学位,指导教授是 Mikko Lipasti 教授。他曾获得威斯康星大学麦迪逊分校颁发的 2020 年最佳 ECE 论文奖,并被评为 2019 年计算机架构新星。他的量子和经典计算研究已在顶级计算机架构、系统和工程会议上发表,并获得了两项专利和三项待批专利。他的合著作品被评为 HPCA 2022 最佳论文和 2023 年 IEEE Micro Top Picks 荣誉奖。