引言胰腺导管腺癌(PDA)是最致命的癌症形式之一(1,2)。这部分归因于强大的转移性行为和对分子,免疫和放射治疗干预措施的耐药性多种机制(3,4)。重要的是,PDA的特征是强大的基质纤维化和免疫抑制反应,在原发性和转移性疾病中产生无药物和抗肿瘤免疫力 - 无药物(5-9)。在极少数情况下,具有免疫检查点阻滞(ICB)的免疫治疗(ICB)已经成功(10),但大多数胰腺癌对ICB具有抵抗力(11)。然而,克服PDA中发现的基质屏障可以使这种疾病容易受到ICB的影响(12-16),证明在正确的治疗条件下,PDA可以在PDA中发生强大的抗肿瘤免疫反应。除了致密的细胞外基质(ECM)以及癌症粘结的成纤维细胞(CAF)的免疫抑制行为之外,PDA中有效抗肿瘤免疫反应的主要障碍之一是免疫抑制性肿瘤相关的巨型乳液的丰富性和活性(TAM)的丰富性和活性。的确,髓样衍生的抑制细胞(MDSC)和巨噬细胞通常是PDA中最丰富的基质种群(14,20)。这对疾病的进展和对治疗的抵抗具有很大的影响,因为明显极化的巨噬细胞能够促进肿瘤进展的所有步骤,包括癌细胞增殖,侵袭和转移性部位的定殖,以及具有鲁棒性炎症性和免疫抑制功能(21-24)。此外,除了
系统模型,并帮助建立了该模型的PSD版本(现在是耦合的北极预测系统,CAFS)。我还努力理解极端北极风的分布及其对海冰的影响。2008年10月至9月。 2010年,博士后研究助理NOAA ESRL PSD水循环分支Boulder,CO产生了与WRF一起在加利福尼亚州进行了11年的6公里。验证了针对风源数据和响应数据的缩减,以评估其适用于塞拉屏障射流动力学研究的适用性。在过去半个世纪的观察中研究了低频的可变性和圣安娜风的趋势。生成了arkstorm的气象数据。2002-九月。 2008年研究助理气候敏感性研究休息室,加利福尼亚州洛杉矶,使用MM5创建的高分辨率(6公里)气候重建研究了南加州的中尺度气候动态。i的重点是传统气候模型无法反应的气候的三个方面:地表空气温度和风的昼夜周期,地形与降水的相互作用以及圣安娜风的动态原因。顾问:Alex Hall博士。2000-2002本科研究助理大气传感和宾夕法尼亚州LIDAR LAB UNICYER PARK设计并建造了Rayleigh Lidar的接收器,重点是将光学斩波器集成到系统中。 顾问:蒂姆·凯恩(Tim Kane)博士1999 - 2000年合作教育学生应用研究实验室大学公园(Research Laboratory University Park),宾夕法尼亚州实施并测试了一种非线性机器学习算法,用于自适应过滤(神经网络)。2000-2002本科研究助理大气传感和宾夕法尼亚州LIDAR LAB UNICYER PARK设计并建造了Rayleigh Lidar的接收器,重点是将光学斩波器集成到系统中。顾问:蒂姆·凯恩(Tim Kane)博士1999 - 2000年合作教育学生应用研究实验室大学公园(Research Laboratory University Park),宾夕法尼亚州实施并测试了一种非线性机器学习算法,用于自适应过滤(神经网络)。与信号/噪声比和输入信号的数量相比,测试了其鲁棒性。
对癌细胞与其环境相互作用的深入了解阐明了肿瘤微环境在肿瘤进展和化学抗性中的关键作用。癌症相关成纤维细胞是肿瘤微环境的主角,促进癌细胞的转移、干细胞和化学抗性,并减弱抗癌免疫反应。胃癌是临床上最具侵袭性的癌症之一,对抗癌疗法具有耐药性。越来越多的证据表明,癌症相关成纤维细胞是胃癌肿瘤免疫微环境不良和预后不良的最主要风险因素。因此,针对癌症相关成纤维细胞可能是克服对传统化疗药物、分子靶向药物和免疫疗法的耐药性、提高胃癌生存率的关键。然而,癌症相关成纤维细胞的异质性可能会使癌症相关成纤维细胞靶向方法的开发复杂化。尽管单细胞测序研究开始剖析癌症相关成纤维细胞的异质性,但研究界仍应回答这些问题:“是什么使得癌症相关成纤维细胞具有致瘤性?”;“不同癌症相关成纤维细胞亚群的细胞内信号传导和分泌组有何不同?”;以及“哪些癌症相关成纤维细胞亚型在特定癌症类型中占主导地位?”。揭开这些问题的面纱可以为发现有效的癌症相关成纤维细胞靶向策略铺平道路。在这里,我们回顾了这些问题的现有知识和观点,重点关注 CAF 如何诱导胃癌的侵袭性和治疗抵抗性。我们还回顾了通过抑制癌症中的 CAF 诱导剂和 CAF 标志物来阻止癌症相关成纤维细胞发展和激活的潜在治疗方法。
我们需要新颖的策略来针对癌症的复杂性,尤其是转移性疾病的复杂性。作为这种复杂性的一个例子,某些组织是转移的特别好客的环境,而其他组织则不含肥沃的微环境来支持癌细胞生长。持续的证据表明,组织的细胞外基质(ECM)是支持癌细胞生长在原发性和次要组织部位的必要因素之一。对癌症转移的研究主要集中在二维组织培养聚苯乙烯板上各种细胞因子和生长因子环境中肿瘤细胞的分子适应。内部成像已经改变了我们实时观察肿瘤细胞侵袭,侵入,渗出和生长的能力。由于支持肿瘤微环境中所有细胞的间质ECM在典型插入成像的可能窗口之外随时间尺度变化,因此生物工具不断开发简单和复杂的体外控制环境,以研究肿瘤(和其他)与该矩阵的细胞相互作用。从这个角度来看,我们专注于负责维护肿瘤器官的病理稳态,与癌症相关的成纤维细胞(CAF)及其自我产生的ECM。后者以及肿瘤和其他细胞分泌的因素,构成“肿瘤生成症”。我们分享了建模该动态CAF/ECM单元,可用工具和技术的挑战和机会,以及如何重塑肿瘤母体(例如,通过ECM蛋白酶)。我们认为,越来越多的有关肿瘤生成体动力学的信息可能会导致该领域成为基因组外科医学的替代策略。
膀胱癌是尿液系统中最常见的恶性肿瘤之一,由于其复杂的生物学特征和高复发率,在治疗方面始终提出了巨大的挑战。尽管在过去十年中,在免疫疗法和靶向疗法方面取得了巨大发展,但许多患者的治疗结果仍然不令人满意,尤其是长期效率。综述讨论了在膀胱癌进展过程中开发的分子机制:遗传和表观遗传改变,肿瘤微环境的动力学(TME),以及各种信号通路的失调和异常激活 - 均导致治疗性抗性。是基因突变,尤其是在低级和高级肿瘤中,与表观遗传修饰相同,在肿瘤侵袭性和耐药性中起着相当大的作用。tme,包括与癌症相关的细菌细胞(CAF),免疫抑制细胞以及细胞外基质(ECM)的不同成分,策划了一种促进肿瘤生长和免疫逃避的环境,并在任何可能使用的治疗方案上均具有抵抗力。审查还提供了膀胱癌进展中PI3K/AKT和MAPK信号通路的概述以及针对它们的靶向疗法的发展。此外,它讨论了免疫疗法抗药性的挑战和机制,包括涉及免疫检查点抑制剂的抗药性和机制。其他有希望的方法包括开发新的治疗策略,这些策略不仅针对信号通路,而且针对组合疗法中的免疫检查点。本综述旨在通过充分了解膀胱癌所涉及的潜在机制来促进更有效和个性化的治疗策略。
胰腺导管腺癌 (PDAC) 是一种发病率不断上升的高度致命疾病。在大多数情况下,胰腺癌都已进入晚期,只有 20% 的病例可以接受手术切除。在患者预后结果方面,胰腺腺癌排名最后,总体 5 年生存率为 2-9% [1,2]。尽管随着新手术技术和药物疗法的引入,胰腺腺癌的治疗正在不断发展,但结果仅取得了微小的改善。由于耐药性高,化疗和放疗在转移性 PDAC 中收效甚微,只能略微延长患者的生存期 [3]。目前,转移性 PDAC 的治疗方案是,对于体能状态良好的患者采用改良 FOLFIRINOX/FOLFIRINOX 或白蛋白结合型紫杉醇和吉西他滨,对于体能状态较差的患者采用吉西他滨联合或不联合第二种药物 [4]。最近,研究 PDAC 免疫疗法更新的试验除具有微卫星不稳定性的腺癌亚组外,其余结果均为阴性[5]。考虑到缺乏有效的治疗方法,确定新的生物标志物和治疗靶点对于制定新的治疗策略和改善临床结果至关重要。最近的研究表明,涉及 STAT3 的信号通路在几种人类恶性肿瘤(如白血病、淋巴瘤)以及实体瘤(如肝细胞癌、食道癌、肺癌、前列腺癌、膀胱癌和乳腺癌)的肿瘤发生、进展和耐药性中起关键作用[6,7]。PDAC 动物模型表明,STAT3 是干细胞自我更新和癌细胞存活的重要调节器[8,9]。 STAT3 的上调已被证明能促进胰腺上皮肿瘤发展为 PDAC [ 10 , 11 ],以及肝脏中促转移微环境的形成 [ 12 ]。此外,STAT3 已被证明能介导化疗耐药性,并与 PDAC 根治性切除术后的不良后果有关 [ 13 – 15 ]。如图 1 所示,IL-6 型细胞因子(IL-6、IL-10、IL-11、白血病抑制因子 (LIF)、心脏营养素-1 (CT-1)、制瘤素-M (OSM)、睫状神经营养因子 (CNTF))结合糖蛋白-130 (GP130) 并激活 Janus 激酶 (JAK),进而磷酸化 STAT3 以及 PDAC 肿瘤细胞以及肿瘤微环境 (TME) 细胞中的其他信号介质 [ 16 ]。 PDAC 中的 TME 是一个复杂的系统,它由广泛的基质网络和不同的细胞成分组成,例如胰腺星状细胞 (PSC)、癌相关成纤维细胞 (CAF)、肿瘤相关巨噬细胞 (TAM)、肥大细胞、调节性 T 细胞和髓系抑制细胞 (MDSC),它们协同作用支持肿瘤进展、免疫逃避和转移扩散。TME 内不同细胞之间的相互作用由信号分子介导,例如通过 IL-6 型细胞因子激活 STAT3。例如,PDAC 肿瘤细胞可以刺激免疫细胞分泌 IL-6 型细胞因子,支持免疫抑制性 TAM 和 MDSC 的发育以及 PSC 和 CAF 的激活,进而通过正反馈回路诱导炎症细胞因子的分泌 [11,17-22]。因此,STAT3 激活通过抑制调节性 T 细胞驱动免疫细胞走向免疫抑制表型,进而维持肿瘤免疫逃逸。此外,STAT3 的磷酸化导致下游靶基因转录增强,从而促进血管生成、侵袭和上皮-间质转化 (EMT) [23]。因此,涉及 STAT3 的通路似乎是治疗 PDAC 的有希望的药物靶点。尤其是IL-6已被证实是克服化疗耐药性的潜在有效治疗方法。本研究旨在通过系统定性文献综述,全面总结针对胰腺腺癌GP130/JAK/STAT3通路的治疗方法。
对妇科癌和宿主免疫力之间的复杂串扰进行了广泛的研究,揭示了对肿瘤发育的迷人见解。包括各种非肿瘤细胞和可溶性介体的肿瘤微环境(TME)在支持妇科癌症发展中起着关键作用(1,2)。在这些元素中,肿瘤 - 纤维化淋巴细胞(TILS)成为捍卫者,配备了识别和消除癌细胞。此外,TME包括与癌症相关的纤维细胞(CAF),内皮细胞,趋化因子,细胞因子,生长因子和抗体,共同调节癌症的启动,进步,甚至治疗反应(3-5)。癌细胞和其他TME成分释放了许多可以抑制或激活免疫细胞功能的免疫调节信号,从而有效地塑造了免疫反应(6-11)。因此,根据其组成,TME有可能将免疫系统从抗肿瘤模式转换为肿瘤状态(图1)。令人鼓舞的是,针对TME成分的治疗方法,包括髓样衍生的抑制细胞(MDSC),与肿瘤相关的巨噬细胞(TAM)和调节性T细胞(Tregs)(Tregs),并在临床前和临床研究中都表现出了令人鼓舞的抗肿瘤活性(12-18)。因此,探索TME的预测和治疗价值是推进妇科癌症治疗的明显希望。在这里,我们发表了一篇研究主题,介绍了六篇文章,重点介绍了针对妇科癌症的TME靶向治疗策略。Yu等人的评论。强调了血管生成在癌症免疫疗法的效率中的关键作用,特别是在卵巢癌的背景下。概述了血管生成,新血管的形成,不仅支持肿瘤的生长和转移,而且显着影响TME,从而影响了免疫疗法(例如免疫检查点抑制剂(ICIS))的成功。通过通过异常肿瘤脉管系统促进血液灌注不足,缺氧和免疫逃避,血管生成为有效的免疫疗法带来了艰巨的障碍。抗血管生成疗法被贝伐单抗等药物示例,其针对这些血管异常,不仅破坏了肿瘤血液供应,而且可以潜在地重塑TME,从而增强了抗肿瘤免疫力。临床和临床前研究表明
对抗富含基质的实体瘤 2023 年 5 月 12 日 - 纽约州纽约市 - Cellectis(“公司”)(Euronext Growth:ALCLS - 纳斯达克股票代码:CLLS)是一家临床阶段生物技术公司,利用其开创性的基因编辑平台开发挽救生命的细胞和基因疗法,今天在 Frontiers Bioenginnering 上发表了一篇文章,展示了其 TALEN® 工程 FAP UCART 细胞在癌症相关成纤维细胞 (CAF) 耗竭、减少纤维增生和肿瘤浸润方面的功效。基于嵌合抗原受体工程 T (CAR-T) 细胞的过继细胞疗法已被证明可以挽救许多癌症患者的生命。然而,迄今为止,其治疗效果仅限于少数恶性肿瘤,而实体瘤被证明尤其难以有效治疗。由于促纤维增生和免疫抑制微环境导致的 T 细胞肿瘤内浸润不良和 T 细胞功能障碍是 CAR T 细胞成功对抗实体瘤的主要障碍。癌症相关成纤维细胞 (CAF) 是肿瘤基质的重要组成部分,专门在肿瘤微环境 (TME) 内进化。CAF 分泌组是细胞外基质和大量诱导免疫抑制的细胞因子和生长因子的重要贡献者。它们共同形成物理和化学屏障,诱导排除 T 细胞的“冷”TME。因此,富含基质的实体瘤中 CAF 的耗竭可以提供机会将易受肿瘤抗原 CAR T 细胞细胞毒性的免疫逃避性肿瘤转化为免疫逃避性肿瘤。 Cellectis 使用其基于 TALEN® 的基因编辑平台设计出非同种反应性、免疫逃避性 UCAR T 细胞,靶向独特的 CAF 标记成纤维细胞活化蛋白 α (FAP),以测试 FAP UCAR T 细胞预处理是否能使“冷”肿瘤对随后的肿瘤抗原靶向 CAR T 细胞敏感。Cellectis 还生成了针对肿瘤相关抗原 (TAA) 间皮素的非同种反应性 CAR T 细胞,该抗原在大多数实体肿瘤中过度表达,包括间皮瘤和卵巢、乳腺癌、胰腺和肺腺癌的大部分亚组。联合治疗策略在三阴性乳腺癌 (TNBC) 的临床前小鼠模型中进行了测试,三阴性乳腺癌是一种侵袭性强、富含基质的乳腺癌亚型,预后不良,目前治疗选择非常有限。 Cellectis 高级科学家兼团队负责人 Shipra Das 博士表示:“超过 90% 的上皮癌(包括乳腺癌、结直肠癌、胰腺癌和肺腺癌)表达 CAF 特异性表面标志物成纤维细胞活化蛋白 α (FAP),这使其成为一种有前途的 CAR T 细胞靶点。在这项研究中,我们提出了一种新颖且多功能的 CAR T 细胞联合疗法,可以扩展到大多数富含基质的冷性肿瘤,并采用针对相关肿瘤抗原的 CAR T 细胞,否则这些肿瘤对细胞疗法有抵抗力。”