本节应包括设施平面图,并指明气味排放活动和排放的位置。相关信息可能包括但不限于门、窗、通风系统和气味源的位置。如果设施已在其营业执照申请平面图中提供了具体气味排放活动和排放的位置,则可改为引用设施的业务文件编号和该申请中平面图所在的相关部分。
大多数电信和射频传感市场都在向更高性能的无线链路和传感技术迈进。为了实现这些新的吞吐量、延迟、可靠性、无线连接设备数量、可配置性和传感分辨率,从蜂窝电信到军用雷达应用,业界已投入大量资金来使用频谱的更高频率部分。这些努力要求开发更强大的先进/有源天线系统 (AAS) 用于电信,以及有源电子控制天线阵列 (AESA) 用于军事/国防传感和干扰技术。需要在更高频率下使用更复杂的 AAS 来克服与微波和毫米波通信和传感相关的高大气衰减和对准挑战。在大多数情况下,电子可控相控阵天线一直是实现 AAS 的最受探索的解决方案。
本文表达的观点为作者的观点,并不一定反映 AlixPartners, LLP、其关联公司或该公司或它们各自的任何其他专业人士或客户的观点。本文涉及 2020 年交易总额下降,但航空航天并购已准备好再次腾飞(“文章”),由 AlixPartners, LLP(“AlixPartners”)编写,仅供一般参考和分发,严格保密且不可依赖。拥有本文的任何人不得依赖本文的任何部分。本文可能全部或部分基于对未来事件的预测或预报。预测本质上是推测性的,包括可能被证明是错误的估计和假设。实际结果可能与预测或预报不同,而且经常如此。本文中的信息反映了截至目前的情况和我们的观点,所有这些都可能发生变化。我们不承担更新或修订本文的义务。本文版权归 AlixPartners 所有,未经 AlixPartners 事先书面同意,不得复制、使用或分发给任何第三方本文及其内容。
关键词:LiDAR、ALS、发展趋势、科学研究、应用、出版物评论、生产潜力 摘要:本文回顾分析了过去二十年,即从波兰开始使用这项技术到现在,该国机载激光扫描技术的发展。本文重点介绍国家研究中心在技术领域的发展趋势和科学与应用问题。这篇评论基于该领域的大量出版物,这些出版物主要发表在“摄影测量、制图和遥感档案”中,发表于二十多年前。因此,本文试图系统化和回顾该领域的国家出版物,介绍机载激光扫描领域的进展。它还展示了国家生产潜力的发展以及该国使用机载激光扫描数据和产品的覆盖水平。
摘要:目前LiDAR以单点LiDAR为主,APD阵列和激光器阵列受限于出口,面阵LiDAR数量稀少。单点LiDAR发射激光后无法在地面形成只有一个激光点的扫描模式,所以必须有一套针对单点LiDAR的扫描装置。本文设计的扫描装置通过旋转折射棱镜在地面形成圆形扫描区域,同时形成锥形视场。目前船用LiDAR较多采用该类扫描仪,该类扫描仪的优点是:机械结构简单,运行平稳,飞行过程中可得到重叠的椭圆形扫描轨迹,增加了扫描密度。本文采用超低色散玻璃作为折射棱镜,在一定的激光频率范围内,折射棱镜对不同频率的激光折射效果几乎相同。仿真结果表明,该扫描仪可以作为普通LiDAR扫描仪使用,也可以作为双频LiDAR扫描仪使用。
关键词:地形激光雷达、无人机、精度、变化检测、基于对象的分析、地貌学 摘要:本文评估了无人机 (UAV) 激光扫描在监测阿尔卑斯山草地浅层侵蚀方面的潜力。在多洛米蒂山脉(意大利南蒂罗尔)亚高山/高山海拔区的试验场,无人机激光扫描 (ULS) 获取了 3D 点云。为了评估其精度,将该点云与 (i) 差分全球导航卫星系统 (GNSS) 参考测量和 (ii) 地面激光扫描 (TLS) 点云进行了比较。 ULS 点云和机载激光扫描 (ALS) 点云被栅格化为数字表面模型 (DSM),作为侵蚀量化的概念验证,我们计算了 2018 年的 ULS DSM 和 2010 年的 ALS DSM 之间的高程差异。对于连续的高程变化空间对象,计算体积差异,并为每个变化对象分配一个土地覆盖类别(裸地、草地、树木),该类别源自 ULS 反射率和 RGB 颜色。在此测试中,ALS 点云的准确性和密度主要限制了对地貌变化的检测。尽管如此,结果的合理性已通过现场地貌解释和记录得到证实。估计测试地点(48 公顷)的总侵蚀量为 672 立方米。这种侵蚀体积估计值
摘要 激光扫描是获取地形及其上物体的高精度最新空间数据的方法之一。激光雷达 (LIDAR) 是最现代、发展最快的技术之一,它揭示了迄今为止传统方式无法实现的测量新功能。本文旨在展示使用机载激光扫描数据进行能源网络测量和可视化的可能性,以及使用 TerraSolid 软件包识别现有网络对周围环境构成的危险。根据从机载激光扫描中获得的两种不同点云,对电力线的两个独立部分进行了测量。第一个点云的密度为 16 点/平方米,另一个点云的密度为 22 点/平方米。该项目是在 MicroStation V8i 软件环境中创建的,使用特殊叠加层——芬兰 TerraSolid 公司的 TerraScan 和 TerraModeler。使用不同密度的测试云旨在指示点云的最佳密度,从而允许基于机载激光扫描数据对能源网络进行调查和可视化。该出版物通过特定示例介绍了电力线矢量化和可视化的过程以及在危险距离内检测物体的过程。还证实了使用满足行业要求的应用激光雷达数据进行电力线调查的可能性。
摘要 在航空航天工程中,计算流体动力学 (CFD) 领域研究飞机的空气动力学行为。目前用于执行 CFD 模拟的是飞机的计算机辅助设计 (CAD) 模型,这些模型通常是低细节的工业设计模型。研究改进模拟过程结果的新方法非常重要。可以在此方向上测试的一种方法是创建用于 CFD 的实际飞机的更详细模型。这种模型可以通过逆向工程技术构建。在众多可用方法中,激光扫描最适合这样的项目。这是因为激光扫描具有在短时间内以高精度获取大量物体点的优势。代尔夫特理工大学拥有开展此类项目的必要资源。对代尔夫特理工大学航空航天工程学院的一架用于教学和科学目的的 Cessna Citation II 进行了测量。还提供这架飞机的 CAD 设计模型。此外,代尔夫特理工大学的光学和激光遥感系还提供了一台 Z+F Imager 5003 激光扫描仪。这是一款相位扫描仪,每秒可以轻松捕获 120,000 个 X、Y 和 Z 坐标点。测量在一天之内在 Schiphol East 的机库中进行,Cessna 就位于那里。所选的测量设置使用了 12 个扫描位置,这些位置“su
扫描技术,尤其是移动扫描技术的快速发展,使得从海上测量平台和自主载人或无人驾驶车辆收集空间数据成为可能。提出的解决方案源自移动扫描。然而,我们应该记住,海上激光扫描的特殊性和收集到的数据的处理应该采用地理信息系统可接受的形式,特别是典型的海上需求。同时,我们应该意识到,来自海上移动扫描的数据构成了描述海洋环境的新方法,并带来了与空中和陆地扫描完全不同的新视角。因此,作者想展示一项旨在测试在海上使用移动扫描可能性的实验结果。实验是在波罗的海南岸邻近的港口和相关环境中进行的。
*通讯作者:abraham.ogofureabraham@live.com摘要番茄(Solanum lycopersicum),是索拉纳科家族中最重要的蔬菜农作物之一,它在世界各地种植以食品和其他经济目的。在本研究中研究了不同产品品牌的罐头番茄罐头的微生物变质。观察到总有氧和厌氧计数小于10个3个细胞,这些细胞在可接受的极限之内。罐装产品中的两种没有微生物计数,而其他罐头的计数从2 x 10 1到5 x 10 1不等,用于有氧开放的番茄的有氧计数,1 x 10 1至2 x 10 1用于厌氧计数。然而,在所有六种研究中,损坏的番茄罐装产品的有氧运动范围为4.2 x 10 4到9.1 x 10 4。厌氧罐装番茄的厌氧计数范围为2.5 x 10 4到6.8 x 10 4。从变质罐头番茄样品中获得的孤立生物显示出存在芽孢杆菌,金黄色葡萄球菌,乳酸链球菌,乳酸菌,假单胞菌,sp。,梭状芽孢杆菌,梭状芽孢杆菌,梭状芽孢杆菌,coagulus coagulans,saccharomyces sp。,念珠菌sp。,粘液sp。,尼日尔曲霉和青霉。这些生物与在贝宁市销售的罐头番茄产品的破坏有关。开放后立即消耗这些产品时,它们是安全的,因为新鲜产品的微生物负载在可接受的监管标准之内。关键字:西红柿罐头,监管标准,有氧计数,厌氧计数
