CRISPR / Cas12a 是一种单效应核酸酶,与 CRISPR / Cas9 一样,由于其能够产生靶向 DNA 双链断裂 (DSB) 而被用于基因组编辑。与 Cas9 产生的平端 DSB 不同,Cas12a 产生的粘性末端 DSB 可能有助于精确的基因组编辑,但这一独特功能迄今为止尚未得到充分利用。在当前的研究中,我们发现,短双链 DNA (dsDNA) 修复模板包含一个与 Cas12a 产生的 DSB 末端之一匹配的粘性末端和一个与 DSB 另一端相邻的基因组区域具有同源性的同源臂,能够精确修复 DSB 并引入所需的核苷酸替换。我们将这种策略称为“连接辅助同源重组”(LAHR)。与单链寡脱氧核糖核苷酸 (ssODN) 介导的同源定向修复 (HDR) 相比,LAHR 的编辑效率相对较高,这在报告基因和内源基因中均有体现。我们发现 HDR 和微同源介导的末端连接 (MMEJ) 机制都参与了 LAHR 过程。我们的 LAHR 基因组编辑策略扩展了基因组编辑技术的范围,并更广泛地了解了基因组编辑中涉及的 DNA 修复机制的类型和作用。
Cas12a 特异性的参考文献:Kim 等人。Nat Biotech 2016,Kleinstiver 等人。Nat Biotech 2016,Strohkendl 等人。Mol Cell 2018,Swarts 等人。Biochem Soc Trans 2019
紧凑型和多功能的CRISPR-CAS系统将在各种环境中通过高功能交付来实现基因组工程应用。在这里,我们创建了一种通过引导RNA和蛋白质工程设计从V型Cas12f(Cas14)系统设计的有效的微型CAS系统(Casmini),该系统的大小不到当前使用的CRISPR系统(CAS9或CAS12A)的一半。我们证明,Casmini可以驱动高水平的基因激活(最大增加),而天然CAS12F系统无法在哺乳动物细胞中起作用。我们表明,Casmini系统具有与CAS12A相当的基因激活活动,具有高度特定的,并且允许稳健的基础编辑和基因编辑。我们期望Casmini对细胞工程和基因治疗应用具有广泛的用处,并在体内和体内有用。
Ensoma 准备创造一个新的治疗类别。利用一流的递送和工程技术,该生物技术公司旨在利用体内造血干细胞 (HSC) 的力量,为癌症、自身免疫和遗传疾病提供一次性、现成的治疗。Ensoma 利用其病毒样颗粒 (VLP) 递送平台,专注于通过体内血液和免疫细胞的工程化来治疗疾病。利用基因编辑方法治疗更多疾病的潜力促使 Ensoma 于 2023 年初收购了 Twelve Bio,扩展了其工程工具包,包括基于成簇的规律间隔短回文重复序列 (CRISPR) 相关蛋白 12a (Cas12a) 的编辑器。该公司已将这些编辑器整合到其体内 Engenious 平台和管道计划中,并正在探索将其编辑器与使用各种递送技术针对其他细胞的公司合作的机会。 Ensoma 的工具包建立在结构洞察的基础上。Twelve Bio 的哥本哈根大学创始人利用 X 射线晶体学和低温电子显微镜,展示了 Cas12a 能够以极高的特异性识别 DNA 靶序列;研究了靶向 CRISPR RNA (crRNA) 的蛋白质与靶序列 DNA 之间的分子相互作用;并揭示了酶如何改变形状以适应精确结合。这些洞察使该公司能够增强 Cas12a(一种小型精确编辑蛋白)的天然优势,从而创建具有更高安全潜力、更好的多路复用能力和交付平台多功能性的编辑器。
CRISPR-CAS基因组编辑技术正在快速开发,而新的分子工具(例如CRISPR核酸酶)正在定期使用。作为本研究主题的一部分,Bandyopadhyay等。提供了CAS12A的全面概述,CAS12A是一种CRISPR核酸酶,以前称为CPF1。在他们的评论文章中,作者涵盖了Cas12a的结构和机械方面,与Cas9相比,Cas9是最常用的CRISPR核酸酶。他们还强调了Cas12a的用途,目的是改善各种农作物中的农业重要特征。El-Mounadi等人提供了CAS9基因组编辑应用的概述。谁向读者介绍了Cas9活性的机制,其向植物细胞传递的方法(即转化技术),提供了使用CRISPR-CAS9改善作物性状的示例,并触摸了与基因组编辑相关的生物安全和调节方面。A number of countries (e.g., the USA, Brazil, Argentina, and Japan) have already exempted genome edited crops, which do not carry transgenic DNA or novel combination of genetic material (i.e., not similarly achievable through conventional breeding), from being regulated similarly to Genetically Modified Organisms (GMOs) as genetically engineered (GE) organisms ( Schmidt et al., 2020)。尽管上述国家通过了立法,允许在没有GE监管的情况下培养基因组编辑的农作物,但有关该问题的公众对话和政策发展正在发展。对于日本,Tabei等人。在2019年5月至2019年10月期间分析有关基因组编辑的食品及其标签的Twitter对话。分析表明,有54.5%的相关推文是与使用基因组编辑的农作物生产的食物相反的陈述,而只有7%是有利于它的陈述。其余38.5%的推文是被认为是中性的陈述。尽管由于Twitter用户之间的偏见,该分析不一定代表更广泛的日本社会,但该研究强调了关于基因组问题在日本和世界其他地区进行基因组问题的持续公开对话的重要性。
随着成簇的规则间隔短回文重复序列 (CRISPR) 和 CRISPR 相关蛋白 (Cas) 介导的基因组编辑的出现,近年来作物改良取得了重大进展。在这种基因组编辑工具中,CRISPR 相关 Cas 核酸酶通过其首选的原间隔区相邻基序 (PAM) 限制在其 DNA 靶标上。已经开发了许多 CRISPR-Cas 变体,例如 CRISPR-Cas9、-Cas12a 和 -Cas12b,具有不同的 PAM 要求。在这篇小型评论中,我们简要介绍了用于作物改良的基于 CRISPR 的基因组编辑工具的组成部分。此外,我们力图突出介绍 CRISPR 技术的最新发展和突破,重点比较主要变体(CRISPR-Cas9、-Cas12a 和 -Cas12b)与新开发的 CRISPR-SpRY(几乎无 PAM 基因组编辑能力)。此外,我们简要介绍了 CRISPR 技术在改良栽培草类生物和非生物胁迫耐受性以及提高品质和产量方面的应用。
摘要 CRISPR-Cas12a 系统已被开发用于在真核细胞中实现高度特异性的基因组编辑。鉴于 Cas12a 基因相对较小,该系统被认为最适用于使用 AAV 载体递送的基因治疗。之前,我们报道了富含 U 的 crRNA 能够通过 CRISPR-Cas12a 系统在真核细胞中进行高效的基因组编辑。在本研究中,我们在 crRNA 富含 U 的 3 ′-突出端的核糖 C2 处引入了甲氧基修饰。当与 Cas12a 效应蛋白混合时,核糖基-2 ′-O-甲基化 (2-OM) 富含 U 的 crRNA 能够提高 dsDNA 的消化率。此外,化学修饰的富含 U 的 crRNA 在小鼠受精卵中实现了非常安全且高度特异性的基因组编辑。工程化的 CRISPR-Cas12a 系统有望促进各种动物模型的生成。此外,工程化的 crRNA 也得到了评估,以进一步改进 CRISPR 基因组编辑工具集。
Cas12a(以前称为 Cpf1)核酸酶在基因组工程中的广泛使用受到它们需要相当长的 TTTV 原型间隔区相邻基序 (PAM) 序列的限制。在这里,我们旨在放宽这些 PAM 限制,并通过将其相应的 RR 和 RVR 变体的突变与改变的 PAM 特异性相结合,生成了在哺乳动物和植物细胞中活跃的四种 Cas12a 直系同源物的新型 PAM 突变变体。选择表现出最高活性的 LbCas12a-RVRR,使用基于质粒的测定法深入表征其在哺乳动物细胞中的 PAM 偏好。LbCas12a-RVRR 的共识 PAM 序列类似于 TNTN 基序,但也包括 TACV、TTCV CTCV 和 CCCV。经发现,改良的 LbCas12a (impLbCas12a) 中的 D156R 突变以 PAM 依赖的方式进一步提高了该变体的活性。由于 impLbCas12a 和最近报道的 enAsCas12a 变体的 PAM 偏好重叠但仍有差异,它们相互补充,为基因组编辑和转录组调节应用提供了更高的效率。
事实证明,CRISPR-Cas 编辑系统是功能基因组学研究的有力工具,但它们在许多非模型物种中的有效性仍然有限。在马铃薯和番茄病原菌疫霉菌中,之前开发了一种编辑系统,该系统表达毛螺菌科细菌 Cas12a 内切酶 (LbCas12a) 和来自 DNA 载体的引导 RNA。然而,该方法效率低下。基于编辑受疫霉菌生长和内切酶催化的最佳温度不匹配限制的假设,我们测试了两种策略,将两个目标基因的编辑频率提高了约 10 倍。首先,我们发现 LbCas12a (D156R) 中的突变可以促进编辑,据报道,这种突变可以在更宽的温度范围内扩大其催化活性。其次,我们观察到,在较高温度下瞬时孵育转化组织可以增强编辑效果。这些修改应该使 CRISPR-Cas12a 更适用于研究 P. infestans 及其亲属中的基因和蛋白质功能,特别是在较低温度下生长最佳的物种。
Cas12a(以前称为 Cpf1)核酸酶在基因组工程中的广泛使用受到它们需要相当长的 TTTV 原型间隔区相邻基序 (PAM) 序列的限制。在这里,我们旨在放宽这些 PAM 限制,并通过将其相应的 RR 和 RVR 变体的突变与改变的 PAM 特异性相结合,生成了在哺乳动物和植物细胞中活跃的四种 Cas12a 直系同源物的新型 PAM 突变变体。选择表现出最高活性的 LbCas12a-RVRR,使用基于质粒的测定法深入表征其在哺乳动物细胞中的 PAM 偏好。LbCas12a-RVRR 的共识 PAM 序列类似于 TNTN 基序,但也包括 TACV、TTCV CTCV 和 CCCV。经发现,改良的 LbCas12a (impLbCas12a) 中的 D156R 突变以 PAM 依赖的方式进一步提高了该变体的活性。由于 impLbCas12a 和最近报道的 enAsCas12a 变体的 PAM 偏好重叠但仍有差异,它们相互补充,为基因组编辑和转录组调节应用提供了更高的效率。
