(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该预印本版的版权持有人于2023年6月24日发布。 https://doi.org/10.1101/2023.06.24.545427 doi:biorxiv preprint
在过去的几年中,发现各种自然的发现和一系列工程的CRISPR/CAS核酸酶的发展使几乎每个植物基因组的位点都可以访问以诱导特定变化。新开发的工具为诱导遗传变异性(从更改单个BP转换为Mbps),从而为植物的性能提供了广泛的可能性。虽然早期方法集中在靶向诱变上,但最近开发的工具可以诱导精确和预定义的基因组修饰。基本编辑器的使用允许替换单核苷酸,而使用Prime编辑器和基因靶向方法可以使较大序列修改从几个碱基诱导到几个KBP。最近,通过CRISPR/CAS介导的染色体工程,有可能在MBP范围内诱导遗传版本和易位。因此,育种者的破坏和固定遗传联系的一种新颖的方式已成为可能。此外,已证明对转录和转录后调节涉及的各种因素的序列特异性募集已被证明为植物性能进行微调提供了另一种方法。在这篇综述中,我们概述了基于CRISPR/ CAS的工具开发植物基因组工程领域的最新进展,并试图评估这些DE Velopments对育种和生物技术应用的重要性。
CRISPR/CAS系统(聚集定期间隔短的短质体重复序列)已成为操纵基因组的强大工具,以解决研究和治疗目的。然而,该系统的临床使用受到了多种挑战的阻碍,例如脱靶效应的速度,编辑效率,HDR的效率,IM基因性以及可以携带这些化合物的效率和安全递送工具的发展。正在努力克服这些挑战,包括发现和工程更精确和有效的CAS核酸酶。此外,近年来,已经探索了用于体内CRISPR组件的多个病毒和非病毒递送。在这里,我们总结了用于基因组编辑的可用CRISPR/ CAS工具箱,以及最近开发的用于CRISPR/ CAS系统的In Vivo送货车。此外,我们讨论了该系统成功临床翻译的剩余挑战,并突出了当前的临床应用。©2020 Elsevier B.V.保留所有权利。
Cas9 切割的位置由与 Cas 蛋白结合的短 RNA 分子(称为向导 RNA)决定(图 1)。向导 RNA 与 Cas9 结合后,复合物扫描基因组以查找称为 PAM 的三碱基序列。Cas9 PAM 序列为 5' NGG 3',其中 N 可以是任何碱基。当 Cas9 遇到 PAM 序列时,它会解开 DNA,将其分离成单链。然后,Cas9 使用向导 RNA 来确定是否切割 DNA。向导 RNA 的一端有约 20 个碱基,它们决定了 Cas9 将切割哪个 DNA 序列。如果向导 RNA 中这约 20 个碱基的序列与 DNA 互补,则 Cas9 将切割 DNA 的两条链。如果向导 RNA 与 DNA 不匹配,则复合物将移动到下一个 PAM 位点,双螺旋将重新拉上拉链,变成双链形式。使用 Cas9 作为基因编辑工具的诀窍是,科学家可以定制这个约 20 个碱基的序列,将 Cas9 定位到 DNA 的特定区域,基本上允许他们对 Cas9 的切割位置进行编程。
Cas9 切割的位置由与 Cas 蛋白结合的短 RNA 分子(称为向导 RNA)决定(图 1)。向导 RNA 与 Cas9 结合后,复合物扫描基因组以查找称为 PAM 的三碱基序列。Cas9 PAM 序列为 5' NGG 3',其中 N 可以是任何碱基。当 Cas9 遇到 PAM 序列时,它会解开 DNA,将其分离成单链。然后,Cas9 使用向导 RNA 来确定是否切割 DNA。向导 RNA 的一端有约 20 个碱基,它们决定了 Cas9 将切割哪个 DNA 序列。如果向导 RNA 中这约 20 个碱基的序列与 DNA 互补,则 Cas9 将切割 DNA 的两条链。如果向导 RNA 与 DNA 不匹配,则复合物将移动到下一个 PAM 位点,双螺旋将重新拉上拉链,变成双链形式。使用 Cas9 作为基因编辑工具的诀窍是,科学家可以定制这个约 20 个碱基的序列,将 Cas9 定位到 DNA 的特定区域,基本上允许他们对 Cas9 的切割位置进行编程。
摘要:基因组编辑领域始于酵母中巨核酸酶(如LAGLIDADG家族归巢核酸内切酶)的发现。继转录激活因子样效应核酸酶和锌指核酸酶发现之后,最近发现的成簇的规律间隔的短回文重复序列(CRISPR)/CRISPR相关蛋白(Cas)系统为基因编辑领域的应用打开了新的窗口。本文,我们回顾了不同的Cas蛋白及其相应的特点包括优缺点,并概述了不同的核酸内切酶缺陷型Cas蛋白(dCas)衍生物。这些dCas衍生物由核酸内切酶缺陷型Cas9组成,其可与不同的效应结构域融合以执行不同的体外应用,如追踪、转录激活和抑制以及碱基编辑。最后,我们回顾了这些 dCas 衍生物在体内的应用,并讨论了它们在体内进行基因激活和抑制的潜力,以及它们未来在人类治疗中的潜在用途。
摘要 过去十年,人们在识别用途更广泛的成簇规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 (Cas) 核酸酶及其功能变体以及开发精确的 CRISPR/Cas 衍生基因组编辑器方面取得了快速发展。基因组编辑器的可编程和强大特性为基础生命科学研究及其在生物医学创新和有针对性的作物改良等不同场景中的后续应用提供了有效的 RNA 引导平台。最重要的原则之一是以预期的方式引导基因组序列或基因的改变,而不会产生不良的脱靶影响,这在很大程度上取决于单向导 RNA (sgRNA) 指导的识别目标 DNA 序列的效率和特异性。经验评分算法和机器学习模型的最新进展促进了 sgRNA 设计和脱靶预测。在本综述中,我们首先简要介绍了 CRISPR/Cas 工具的不同特点,应考虑到这些特点以实现特定目的。其次,我们重点介绍在设计 sgRNA 和分析 CRISPR/Cas 诱导的靶向和脱靶突变中广泛使用的计算机辅助工具和资源。第三,我们对现有计算工具的局限性提供了见解,这将有助于该领域的研究人员进一步优化。最后,我们提出了一个简单但有效的工作流程,用于选择和应用基于网络的 CRISPR/Cas 基因组编辑资源和工具。
功能•2年电池的性能典型•安静操作:44 dBA距离驱动器的3英尺(1 m)•精确的驱动器能够在整个阴影的整个行程中停止0.125英寸(3 mm)的间隔•可用的阴影•可用: - 可用的宽度: - 22英寸(559毫米)到96英寸(2438毫米)的22英寸(264毫米)(264英寸)(305 mm)(305米)或类型B支架将用于滚筒阴影,取决于阴影配置1
注意:如果某项不合规被视为无关紧要,但如果情况发生变化则可能变得重要,请通过备忘录通知 CFAO。备忘录将包括一份情况和建议声明 (SOCAR),并为 CFAO 提供足够的信息以了解 CAS 不合规的情况和严重程度。发布备忘录的唯一例外是审计报告包含重大不合规。当报告重大不合规时,非重大不合规将在单独的报告中报告,标题为“需要联邦机构官员注意的不合规”。非重大不合规的附件将在执行摘要中提及,但不会包含在意见依据部分中,因为它不是重大不合规。