蓝藻是唯一能够进行产氧光合作用的原核生物,是重要的初级生产者,在农业、水生生态和环境保护领域发挥着关键作用。它们多功能的代谢使它们成为各种生物技术应用的有趣候选者。最近,通过基于 CRISPR 的方法的发展,它们的基因操作领域取得了巨大进展。然而,大多数可用的质粒都很难操作,这使得它们的使用具有挑战性。在本研究中,我们使用 CcdB 毒素作为选择标记来改进用于蓝藻基因组编辑的基于 Cpf1 的质粒。我们的结果表明,这种选择提高了质粒构建的成功率,从而提高了基因组编辑的成功率。
蓝藻是唯一能够进行产氧光合作用的原核生物,是重要的初级生产者,在农业、水生生态和环境保护领域发挥着关键作用。它们多功能的代谢使它们成为各种生物技术应用的有趣候选者。最近,通过基于 CRISPR 的方法的发展,它们的基因操作领域取得了巨大进展。然而,大多数可用的质粒都很难操作,这使得它们的使用具有挑战性。在本研究中,我们使用 CcdB 毒素作为选择标记来改进用于蓝藻基因组编辑的基于 Cpf1 的质粒。我们的结果表明,这种选择提高了质粒构建的成功率,从而提高了基因组编辑的成功率。
CCDPC 的糖尿病和心脏病 CDC 合作协议已进入资助的第二年,其亮点包括与我们的内部和外部利益相关者实施健康心脏学习协作、向我们的 LHD 发放国家糖尿病预防计划残疾包容补助金,以及继续与内部和外部合作伙伴合作,通过结合健康社会决定因素的团队护理改善糖尿病和心脏病风险患者的健康状况。该中心的评估团队目前专注于完成 2024 年完成的社区卫生工作者 (CHW) 访谈。这些访谈记录了 CHW 多年来为改善马里兰州居民的健康和福祉所做的有影响力的工作。该团队现在正在将调查结果汇总成一份综合报告,重点介绍全州 CHW 工作的主要成就、挑战和成果。该报告将成为未来计划的宝贵资源,并展示 CHW 在解决健康差距方面发挥的重要作用。
Gateway克隆技术基于保守和定向的重组系统,该系统允许在不同的克隆向量之间传递DNA片段,从而保持阅读网格,而无需核苷酸或损失。使用这种技术,不再需要使用限制性核酸内切酶(消除使用限制酶固有的任何限制)和DNA连接酶[1]。与传统的克隆方法相比,这项技术更快,更高效且便宜。此技术使您可以获得极高的克隆效率(大于90%)[2]。该技术是蛋白质合成和功能分析的极好克隆方法[3]。通过两种反应,BP和LR反应,使用了Gateway克隆机制(在ATTP和ATTB,ATTL和ATTR之间)利用gateway的克隆机制。为了发生BP反应,我们首先在包括ATTB序列的引物对[1.3](供体载体包括ATTP位置[1])的帮助下放大了感兴趣的基因。包括ATTB位置的PCR产品与包括ATTP位置的供体矢量相结合,从而形成了输入克隆[1]。ATTB和ATTP位置之间的这种整合反应在于该反应的起源,这引起了含有attl两侧的感兴趣基因的入口克隆(由ATTB和ATTP的重组组成)[1]。LR反应是进入克隆ATTL位置与目标向量的ATTT位置之间的重组反应,导致表达克隆[3]。从BP反应获得的输入克隆包括ATTL位置,目标向量构建以包括ATTR [1]位置。LR反应旨在将感兴趣的基因转移到目标载体,因此输入克隆与适当的目标矢量和LR克隆酶混合。这些地方之间的重组产生了两个分子[2],其中一个包含感兴趣的DNA段,另一个分子是一个副产品,其中包含CCDB基因,该基因与大肠杆菌DNA干扰了它的生长,以阻止其生长[3]。 CCDB。该基因对该技术非常重要,因为它可以防止大肠杆菌生长,从而允许进行负面选择。也就是说,在这两种反应中重组后,我们将拥有一种产品(将具有CCDB基因所在的感兴趣的基因)和副产品(将具有感兴趣基因所在的CCDB基因),因此,当选择的菌落将在其中包含一个具有利益的载体的菌落时,可以更轻松地(将其更容易)(可以选择一个是表达和表达的基因)使网关克隆技术成为高性能克隆技术的因素)。要获得包含CCDB基因的载体和传播向量,我们必须求助于e.coli db3.1 striber,该基因在Girase DNA中具有突变(gyra462),使其对该基因的致命作用具有抗性[3]。将感兴趣的基因或DNA片段克隆在输入克隆中后,我们可以将其转移到各种目的地向量,从表达蛋白到大肠杆菌细胞,酵母,昆虫,哺乳动物之间[4]。该方法的一些主要应用是这样的事实,即它允许输入向量向他人的亚克隆,基于攻城特异性重组,允许每个亚键反应以维持适当的阅读网格,速度和易于次数。
在第一步中,将六个金门入口向量合并为目标向量。有各种可以使用的金门目标向量,其中包含可以使用的不同植物和/或视觉标记物(请参阅补充数据集1中的金门目标矢量(CCDB +)1)。第一个入口向量(AB)包含组织特异性表达的启动子。第三个入口矢量(CD)包含核酸酶,可以与N末端(BC)或C末端标签(DE)结合使用。另外,如果不需要标签,则使用链接序列。第五入口矢量(EF)包含工厂终结器。选择的第六个黄金入口向量(FG)取决于最终目标。要克隆与一个或两个GRNA兼容的矢量,请使用未武装的GRNA进入矢量PGG-F-F-ATU6-26-AARI-AARI-AARI-G(请参阅补充数据集1中的未武装GRNA进入向量1)。要克隆与多个GRNA兼容的矢量,请使用可变的链接器PGG-F-a-aari-sacb-aari-g-g(请参阅补充数据集1中的可变链接器)。由于我们的克隆策略使用限制酶Bsai和Aari,因此要求所有向量都需要无BSAI和AARI-FIME(除了克隆位点)。
摘要:内部是蛋白质嵌入到宿主蛋白中的蛋白质,从中切除它们以自催化反应的形式切除。特别是,分裂的内膜分为两个独立的片段,它们在催化过程中重建宿主蛋白。我们最近制定了一种基于毒素 - 内素组合的致病性和抗生素耐药性细菌特异性杀死的新型策略。细菌II型毒素 - 抗毒素系统是蛋白质模块,其中毒素可以引起细胞死亡,而抗毒素抑制毒素活性。尽管我们以前的系统是基于分裂内部(IDNAE)和CCDB毒素,但我们证明IDNAE能够重建四种不同的毒素。通过扩大复杂设置的毒素 - 内元组合的曲目来扩展系统的适用性,我们引入了第二个Intein,IDNAX,该IDNAX是人为分裂的。我们证明IDNAX能够重建四种毒素,并设法降低了其疤痕尺寸以促进其使用。另外,我们通过毒素重建测定法证明了两种Inteins(IDNAE和IDNAX)的正交性,从而为基于这些毒素 - intein模块的复杂设置打开了可能性。这可用于开发特定的抗菌和其他生物技术应用。关键字:毒素 - 抗毒素系统,内部蛋白质,蛋白质剪接,细菌杀死,微生物合成生物学
网络设备和 SSL/TLS 检查代理 (STIP) 的 PP 配置结合了网络设备协作保护配置文件版本 2.2e 和 SSL/TLS 检查代理 (STIP) 的 PP 模块版本 1.1 的要求。因此,PP 配置将通用网络设备的安全要求与提供 SSL/TLS 检查代理 (STIP) 功能的网络设备的安全要求相结合。PP 配置的使用方式与 PP 相同,并在 CCRA 中被识别为 PP。网络设备和 SSL/TLS 检查代理 (STIP) 的 PP 配置需要完全一致。 PP-Configuration 评估已由 atsec information security AB 于 2024-01-04 完成,与 BIG-IP Version 16.1.3.1(包括 SSLO)的产品评估同时进行,并作为其独立部分,SSLO 声称符合 PP-Configuration。评估根据通用标准 3.1 版第 5 版、IT 安全评估通用方法 3.1 版第 5 版以及 CC 和 CEM 附录 - 精确一致性、基于选择的 SFR、可选 SFR、CCDB(2017 年 5 月)的要求进行。评估根据保证等级 ACE 和保证组件 APE_INT.1、APE_SPD.1、APE_OBJ.2、APE_ECD.1 和 APE_REQ.2 中的要求进行。 atsec information security AB 是瑞典通用标准评估和认证计划下经授权的通用标准评估机构。atsec information security AB 还根据通用标准的 ISO/IEC 17025 获得了瑞典认证机构的认可。认证机构通过审查评估报告中的所有工作单元来监控评估人员的活动。认证机构确定评估结果符合通用标准和通用方法的要求。