由ESA支持的Serma微电子学很高兴地宣布,欧洲和整个欧洲和万维世界太空社区提供的欧洲大学制造业和组装或重新组装服务。除了高可靠性之外,这种技术的主要优势是,成本影响降低,计划合规性以及通过用加强的铜SNPB列代替插入器来重复某些旧设备的可能性。
摘要 陶瓷柱栅阵列封装由于其高互连密度、极好的热性能和电性能、与标准表面贴装封装装配工艺兼容等优点,其应用日益广泛。CCGA 封装用于逻辑和微处理器功能、电信、飞行航空电子设备和有效载荷电子设备等空间应用。由于这些封装的焊点应力消除往往比引线封装少,因此 CCGA 封装的可靠性对于短期和长期空间任务非常重要。对聚酰亚胺 CCGA 互连电子封装印刷线路板 (PWB) 进行了组装、无损检查,然后进行极端温度热循环,以评估其在未来深空、短期和长期极端温度任务中的可靠性。在本次调查中,采用的温度范围涵盖 185 C 至 +125 C 极端热环境。测试硬件由两个 CCGA717 封装组成,每个封装分为四个菊花链部分,总共需要监控八个菊花链。CCGA717 封装的尺寸为 33 毫米 x 33 毫米,具有 27 x 27 个 80%/20% Pb/Sn 柱阵列,间距为 1.27 毫米。菊花链 CCGA 互连的电阻作为热循环的函数进行连续监控。报告了电阻测量结果作为热循环的函数,迄今为止的测试表明,菊花链电阻随着热循环发生了显著变化。随着热循环次数的增加,互连电阻的变化变得更加明显。本文将介绍极端温度下 CCGA 测试的实验结果。使用标准威布尔分析工具提取威布尔参数以了解 CCGA 故障。光学检测结果清楚地表明,柱状元件与电路板和陶瓷封装的焊点在热循环过程中发生故障。第一次故障发生在第 137 次热循环中,63.2% 的菊花链故障发生在约 664 次热循环中。从威布尔图中提取的形状参数约为 1.47,这表明故障与标准浴盆曲线的平坦区域或使用寿命区域内发生的故障有关。基于此实验测试数据,可以使用 CCGA 进行 100 次热循环所研究的温度范围
摘要 摘要 在过去的几十年中,已经开发出了许多量子算法。阻碍这些算法广泛实施的主要障碍是可用量子计算机的量子比特规模太小。盲量子计算 (BQC) 有望通过将计算委托给量子远程设备来处理此问题。在这里,我们介绍了一种新颖的约束量子遗传算法 (CQGA),该算法以非常低的计算复杂度选择约束目标函数(或庞大的未排序数据库)的最佳极值(最小值或最大值)。由于约束经典遗传算法 (CCGA) 收敛到最优解的速度高度依赖于最初选择的潜在解的质量水平,因此 CCGA 的启发式初始化阶段被量子阶段取代。这是通过利用约束量子优化算法 (CQOA) 和 BQC 的优势实现的。所提出的 CQGA 用作上行链路多小区大规模 MIMO 系统的嵌入式计算基础设施。该算法在考虑不同用户目标比特率类别的同时,最大化上行大规模 MIMO 的能量效率 (EE)。仿真结果表明,建议的 CQGA 通过仔细计算每个活跃用户的最佳发射功率,使用比 CCGA 更少的计算步骤,实现了能量效率的最大化。我们证明,当整体发射功率集或总体活跃用户数量增加时,与 CCGA 相比,CQGA 始终执行较少数量的生成步骤。例如,如果我们考虑将总体活跃用户数量 () 设置为 18 的场景,CQGA 会使用较少的生成步骤数(等于 6)找到最优解,而 CCGA 则需要更多的生成步骤数,达到 65。
ACIA 北极气候影响评估 AIRSS 北极冰情航运系统 AMSA 北极海运评估 AMSR-E 先进微波扫描辐射计 - 地球观测系统 ASPEN 北极航运概率评估网络 ASPPR 北极航运污染防治条例 AVHRR 先进甚高分辨率辐射计 AUV 自主水下航行器 CCG 加拿大海岸警卫队 CCGA 加拿大海岸警卫队辅助部队 CCGS 加拿大海岸警卫队舰艇 CLIP 当地冰压目录 CReSIS 冰盖遥感中心 CVN 夏比 V 型缺口 DMSP 国防气象卫星计划 ECA 排放控制区 EEZ 专属经济区 ESMR 电扫描微波辐射计 Envisat“环境卫星”是一颗地球观测卫星 EPA 环境保护署 FE 有限元 FD 有限差分 FRP 纤维增强塑料 FY 第一年 G&M 德国和米尔恩 GCM 全球气候模型 GPR 地面穿透雷达 HAZ 热量影响区 HAZID 危险源辨识 HAZOP 危险源与可操作性 IACS 国际船级社协会 IACS UR I 国际船级社协会,统一要求,极地级 ICESat 冰、云与陆地高程卫星 IMD 海洋动力学研究所 IMO 国际海事组织 IPCC 政府间气候变化专门委员会 LNG 液化天然气 MARAD 海事管理局 MARPOL 国际防止船舶污染公约 MCoRDS 多通道相干雷达测深仪 MODIS 中分辨率成像光谱仪 MOTAN 惯性运动测量系统 MPa 兆帕
2021年3月8日,参议院主席Mary Gauvain Dear Gauvain:在3月3日会议上,研究生事务协调委员会(CCGA)以10-0-2投票批准了UCLA校园的提案,供量子科学技术硕士(QST)。QST计划为学生准备量子技术领域的研发。QST计划中的学生将学习量子力学,量子计算,量子信息和量子设备的基础,他们将学习如何使用量子光学器件,量子传感和材料以及量子设备在实验室中工作,并且他们将学习算法,语言,语言,语言和量子计算的工具。QST计划的一个显着特征是重要的实验室组件,这将有助于将UCLA确立为量子科学家的主要教育者。量子信息科学(QIS)是研究,技术和教育的最前沿的新兴领域。它汇集了传统上在不同领域工作的科学家,例如原子,分子和光学,冷凝物质以及高能量/核物理学,以及工程师,化学家,计算机科学家和数学家。审稿人指出,计划是高质量的,严格的,经过深思熟虑的课程,并指出实验室课程是一种特殊的优势。他们还指出,该计划中的教师教学集很大(来自多克一家部门),并且有资格教授课程。这些教师在研究领域被描述为一流的,对教育和教学法非常感兴趣。多样性将通过财务奖学金(在第一年和第二年,一个50%的奖学金以及较小的奖项;在接下来的几年中,两次50%的奖学金以及较小的奖项以及较小的奖项;这与提议者有关,因为提案中的计划也发生了不同的计划),并在附近的机构中直接招募了促进培训的奖学金(即直接招募社交机构)。物理与天文学系多样性,公平和包容委员会(DEI)的成员将在该计划的招聘和招生委员会中任职,该部门的DEI委员会将评估招聘和保留方面的成功。提案者还表示,他们最近通过NSF量子LEAP挑战研究所奖获得了资金,授予Recuit Lubi Lenaberg,后者是评估和评估计划经理(UC Santa Barbara),以评估该计划在公平,多样性和包容性方面的表现。最后,提议者确实承认,申请人池的初始多样性可能会受到限制,因为它仅限于BS物理学
铅免费焊接和环境合规性:供应链准备和挑战Dongkai Shangguan flextronics摘要供应链准备和兼容性对于平稳过渡到全球电子行业的环境合规性至关重要。本文回顾了无铅销售和ROHS合规性,供应链准备,关键兼容性问题和未来挑战的状态。领先的免费解决方案带有免费的免费焊料合金,现在已经花费了将近15年的时间来开发免费的铅焊料解决方案。自然,努力始于寻找无铅焊料合金。该行业终于融合了SN-AG-CU(SAC)合金;但是,尚不清楚这是否是对单个合金组成的强大收敛,还是具有各种组成和修饰的弱收敛性。如果可以依靠历史在这方面提供任何指导,那么在西方世界中,在远东地区有更多品种的统一性。由于其关键特征的绝对相似性,因此预计SAC周围的这些变化和修改不会需要显着不同的焊接过程和基础设施。知识基础设施该行业在建立知识基础设施方面取得了重大进展,以支持潜在的免费解决方案,包括焊料材料需求,组件要求,PCB(印刷电路板)层压材料和表面表面处理要求,包括SMT(表面上的技术),波浪焊接和重新制作的型板形式和复杂性。in铅免费焊接过程的资格已成为渗透无铅知识和全球工厂能力的有效工具。组件的组件内部材料必须满足ROHS要求。就终止冶金剂而言,对于被动组件,Matte SN Plating已与SN-PB焊料一起使用了很多年,并且也可以与无铅焊料一起使用。对于铅组件,只要可以有效地管理SN Whisker风险,就可以与无铅焊料(“向前兼容”)一起使用Matte SN或SN合金的电镀。ni/pd已与SN-PB焊料一起使用了多年,而Ni/PD/AU目前是铅型组件的替代品,用于铅免费焊接。带有SAC球的区域阵列套件与SAC焊料效果很好。用于回流焊接,假设最低峰值温度为235 o C,最高温度取决于整个电池的温度三角洲,这又取决于板的尺寸,厚度,层计数,布局计数,CU分布,组件尺寸和热质量,烤箱的热质量,烤箱的热容量,以及某些不可循环的过程变异和测量耐受性。大型厚板,带有大型复杂组件(例如CBGA,CCGA等)通常具有高达20-25 o的温度三角洲。返工是另一个有助于组件温度升高的过程。考虑到所有应用要求时,长期以来一直提出了260 o C峰值温度作为铅无铅焊接所需的温度。根据组件的体积和厚度以及过程条件(例如返工),在IPC/JEDEC标准020中捕获了要求(包括焊接峰值温度和公差)。应注意,实际的组件体温可能与板上测得的温度不同,并且不同的组件可能具有不同的温度,具体取决于板上的组件热特性和位置。PCB较高的无铅焊接温度列出了PCB的可靠性问题,例如变色,经线,分层,起泡,垫子提升,CAF,CAF(导电阳极丝),CU桶和箔纸的破裂以及互连分离等焊接过程后,其中一些问题很明显,而其他问题可能会导致潜在的失败。pth(通过孔进行镀板)可靠性可能会受到无铅焊接的不利影响,具体取决于PCB的厚度,层压材料,焊接轮廓和CU分布,通过几何形状和Cu Plating厚度等。
摘要 高密度互连 (HDI) 印刷电路板 (PCB) 和相关组件对于使太空项目受益于现代集成电路(如现场可编程门阵列 (FPGA)、数字信号处理器 (DSP) 和应用处理器)日益增加的复杂性和功能性至关重要。对功能的不断增长的需求转化为更高的信号速度和越来越多的 I/O。为了限制整体封装尺寸,组件的接触焊盘间距会减小。大量 I/O 与减小的间距相结合对 PCB 提出了额外的要求,需要使用激光钻孔微孔、高纵横比核心通孔和小轨道宽度和间距。虽然相关的先进制造工艺已广泛应用于商业、汽车、医疗和军事应用;但将这些能力的进步与太空的可靠性要求相协调仍然是一个挑战。考虑了两类 HDI 技术:两级交错微孔(基本 HDI)和(最多)三级堆叠微孔(复杂 HDI)。本文介绍了按照 ECSS-Q-ST-70-60C 对基本 HDI 技术的鉴定。在 1.0 mm 间距时,该技术成功通过了所有测试。在 0.8 mm 间距时,在互连应力测试 (IST) 和导电阳极丝 (CAF) 测试中会遇到故障。这些故障为更新 HDI PCB 的设计规则提供了基础。简介通常认为 HDI PCB 有两个主要驱动因素:(1) 关键元件的小间距和高 I/O 数量;(2) 这些元件的性能不断提高,导致电路板上的信号线速度加快。微孔的使用可以缩短信号路径的长度,从而提高信号完整性和电源完整性。由于扇出内的密集布线,关键网络可能会受到串扰。在 1.0 mm 间距元件的引脚之间布线差分对需要精细的线宽和间距。0.8 mm 间距元件的埋孔之间不再可能进行差分对布线。需要在扇出区域内分割线对,分割长度决定了分割对对信号完整性的影响。单端网络宽度的变化以及差分对间距和/或走线宽度的变化将导致阻抗不连续。因此,选择合适的层结构和过孔类型将同时改善布线能力和信号完整性。在定义 HDI PCB 技术参数时,一个重要的考虑因素是元件间距和 I/O 数量不能独立处理。间距为 1.0 mm 的高引脚数元件(> 1000 引脚)可能需要使用微过孔来减少总层数或改善受控阻抗线的屏蔽。另一方面,仅具有两排焊球的 0.5 mm 间距元件的逃逸布线可在不使用微孔和细线宽和间距的情况下进行。增加层数以便能够布线一个或多个高引脚数元件将导致 PCB 厚度增加,这会通过限制通孔纵横比影响最小通孔钻孔直径,从而再次限制布线可能性。为了定义 HDI 技术参数,需要了解过去、现在和未来太空项目中使用的面阵器件 (AAD) 的规格。纵观目前正在开发的复杂太空元件,间距为 1.0 mm 的陶瓷柱栅阵列 (CCGA) 仍将是未来几年的首选封装。例如,新的 Xilinx FPGA (RT-ZU19EG: CCGA1752) [1]、CNES VT65 电信 ASIC (CCGA1752) [2] 和欧洲航天局 (ESA) 的下一代微处理器 (NGMP, CCGA625) [3] 就是这种情况。间距较小的柱状网格阵列 (0.8 毫米) 已在研发中得到展示 [4],尽管尚未发现商业实现。带有非塌陷高铅焊球的陶瓷球栅阵列 (CBGA) 用于军事和航空航天应用 [5]。当间距为 0.8 毫米及以上 (0.5 毫米) 时,陶瓷 (即密封) 封装会成为可靠性风险,因为更小的间距 (0.8 毫米) 会降低封装的可靠性。