摘要。低聚聚乙二醇 (PEG) 链中的振动能量传输可以通过光学振动链带以弹道方式进行,表现出快速而恒定的传输速度和高传输效率,从而提供了将超过 1000 cm -1 的大量能量传输到超过 60 Å 的远距离的方法。我们报告了分子内能量传输时间、链间传输速度和端基冷却速率如何取决于环境的刚性和极性。实验使用端基标记的 PEG 低聚物和二维红外 (2DIR) 光谱进行。弹道能量传输在链的一端通过在约 2100 cm -1 处激发叠氮基部分来启动,并通过探测琥珀酰亚胺酯的羰基拉伸模式在链的另一端记录下来。我们发现环境的刚性(聚苯乙烯 (PS) 基质与极性相似的溶液)不会对能量传输时间和链传输速度产生太大影响。这些结果表明,在弱极性介质中,尽管溶液中存在快速松弛成分,但溶液中发生的动态波动(但在固体基质中基本冻结)并不是链状态失相的主要原因。不同介质中传输时间的相似性表明二级链结构对 PEG 链中的传输影响不大。溶剂极性显著影响分子内传输:极性 DMSO 中的传输效率比非极性 CCl 4 或 PS 中的传输效率小约 1.6 倍。在极性更强的溶剂中,琥珀酰亚胺酯端基的冷却时间缩短,影响等待时间依赖形状,从而影响能量到达报告器的时间。本文分析了从数据中提取能量到达时间的不同方法。观察到的链间传输时间对溶剂极性的依赖性表明存在多个以不同群速度在 PEG 链中传播的波包。1. 简介。
AC air conditioning ACRP Airport Cooperative Research Program AEDT Aviation Environmental Design Tool AMT Auto Marine Terminal ANL Argonne National Laboratory AP accounts payable API Application Programming Interface APU auxiliary power unit AR accounts receivable ATADS Air Traffic Activity Data System B20 20 percent biodiesel BPC Battery Park City/Brookfield Place Ferry Terminal Btu British thermal units CAD Central Automotive Division CAP criteria air pollutant CARB California Air Resources Board ccf 100 cubic feet CCL C40 Cities Climate Leadership Group CEMS continuous emission monitoring system Central Hudson Central Hudson Gas & Electric, Corp. CFR Code of Federal Regulations CH 4 methane CHP combined heat and power CIRIS City Inventory Reporting and Information System CMV commercial marine vessels CNG compressed natural gas CO 2 carbon dioxide CO 2 e carbon dioxide equivalent ConEdison Consolidated Edison Co. of N.Y., Inc. CY calendar year ECRR Essex County Resource Recovery EDMS Emission and Dispersion Modeling System EDP Environmental Disclosure Program EPA U.S. Environmental Protection Agency EPD Environmental Product Declaration eGRID Emissions & Generation Resource Integrated Database E10 10 percent ethanol E85 85 percent ethanol EIA U.S. Energy Information Administration EPA U.S. Environmental Protection Agency EUI energy use intensities EWR纽瓦克·自由国际机场安永发射年FAA联邦航空管理局FHWA联邦公路管理机构EPA的设施级别有关温室气体工具工具G ram(S)GAL加仑(S)GGRP Greenhouse GALL(S)GGRP Greenhouse Gas Reporting计划Ghg Greenhouse Greenhouse Gearnhouse GAS GELENHOUSE GELESES GELENHOUSE GELESES,调节的投射和能源在技术中的能源使用GRP GRP GRP GRP GREP GREP GREP GREP GRES gse Glost Advents设备
ACA 阿尔巴尼亚竞争管理局 ACER 能源监管机构合作机构 AEE 国家能源效率局 AFD 法国开发署 AKPT 国家领土规划局 ALKOGAP 阿尔巴尼亚科索沃天然气管道 APEX 阿尔巴尼亚电力交易所 ASOR 国家石油储备安全局 AZHBR 国家农村和农业发展局 BaU 一切照旧 BPA 农业最佳实践准则 BRE-E 电力行业 RES BRE-N & F 供热和制冷行业 RES BRE-T 交通行业 RES cap capita CAPEX 资本支出 CCL 公民气候游说团 CDD 制冷度日数 CfD 差价合约 CH 4 甲烷 CO2 二氧化碳 CO 2 eq 二氧化碳当量 DCM 部长理事会决定 EBRD 欧洲复兴开发银行 ECM 能源保护措施 EE 能源效率 EEAP 能源效率行动计划 EED 能源效率指令 EIA环境影响评估 EPBD 建筑能效指令 EnC 能源共同体 ENTSO-E 欧洲输电系统运营商网络 ERE 能源监管局 ERRU 阿尔巴尼亚水务监管局 ESCO 能源服务公司 ESIA 环境和社会影响评估 ESO 保加利亚输电系统运营商 ETS 排放交易系统 EV 电动汽车 FEC 最终能源消耗 FiT 上网电价 GACMO 温室气体减排成本模型 GDP 国内生产总值 GHG 温室气体(公顷) HDD 供暖度日数 HEI 高等教育机构 HERE 高等教育改革专家 HPP 水电站 HVDC 高压直流电 IAP 爱奥尼亚亚得里亚海管道 IECC 能源和气候部际委员会 IEE 工业能源效率 INDC 国家自主贡献目标 INSTAT 阿尔巴尼亚统计局 IPA 加入前援助工具 IPARD 加入前农村发展援助工具 IPPU 工业过程和产品使用 ISARD 农业和农村发展跨部门战略 IST 智能交通系统 ISWM综合固体废物管理 ITS 智能运输系统 KESH 阿尔巴尼亚电力公司 KfW Kredittanstalt für Wiederaufbau KOSTT 科索沃电力系统运营商
摘要:免疫接种是一种经济有效的方式,旨在提高儿童存活率。覆盖率是监测实现儿童存活率的进展情况和降低儿童发病率和死亡率战略的指标。这项研究是一项描述性横断面研究,研究对象为 300 名母亲/看护者,她们在一家高等院校的诊所使用免疫卡和母亲的口头回答为儿童接种疫苗。研究结果显示,220 名(73.3%)儿童已完全接种年龄疫苗,而 80 名(26.7%)儿童未接种。卡介苗是受访者接种最多的疫苗,280 人(93.3%)接种了该疫苗,其次是口服脊髓灰质炎疫苗,261 人(87.0%)和五联疫苗,246 人(82.0%)。大多数儿童接种了年龄疫苗,卡介苗、口服脊髓灰质炎疫苗和五联疫苗的覆盖率很高。影响免疫接种利用率的社会人口因素包括母亲的教育水平、职业、接受产前护理的情况。更好地了解免疫接种时间表对于免疫接种计划的设计和实施非常重要。建议对母亲进行有关疫苗和疫苗可预防疾病的教育。DOI:https://dx.doi.org/10.4314/jasem.v24i8.12 版权:版权所有 © 2020 Uwaibi。这是一篇开放获取的文章,根据知识共享署名许可 (CCL) 分发,允许在任何媒体中不受限制地使用、分发和复制,只要正确引用原始作品。日期:收到:2020 年 5 月 30 日;修订:2020 年 7 月 3 日;接受日期:2020 年 8 月 5 日 关键词:决定因素、疫苗接种、三级医院、儿童 免疫接种等有效干预措施可对抗常见和可预防的儿童疾病,这对于提高儿童生存率至关重要。要使免疫接种成为一项有效的长期全球儿童疾病控制战略,父母必须继续让孩子接种疫苗。(世卫组织,2012 年)按照建议的年龄和间隔接种疫苗可确保儿童始终受到充分保护,免受目标疾病的侵害。但是,为了最大程度地预防疫苗可预防的疾病,儿童应在建议的间隔内接种所有疫苗,因为无论接种疫苗时的年龄如何,已接种所需剂量疫苗的儿童百分比决定了疫苗接种覆盖率。(Luman 等人,2005 年)在尼日利亚,针对儿童疫苗可预防疾病的常规免疫接种要求儿童到固定免疫诊所就诊五次。每次就诊时,母亲都会得到下次接种疫苗的预约日期(写在孩子的登记卡上)。尽管采取了这种方法,但据报道,母亲不遵守免疫接种计划是尼日利亚免疫接种覆盖率低的一个因素。(FMOH,1992;FMOH,1995)。自 1979 年尼日利亚开始实施 EPI 以来(NPI,2001),报告显示
摘要:近年来,复合材料在电子工业和其他制造业中占据了主导地位。因此,铝碳化硅 (AlSiC) 等复合材料已被用于生产散热器,主要用于管理电子设备中的热量。然而,这种复合材料的热疲劳是维持设备可靠性的主要挑战。本文研究了 AlSiC 复合材料的热机械效应。有限元法 (FEM) 用于分析基于 10 – 50% 成分之间的颗粒夹杂物的复合材料。本研究中使用的热曲线 (-40 o C 至 85 o C) 已在商业上用于消费产品。获得并评估了基于应力和应变参数的复合材料的疲劳寿命。本研究的结果表明,变形、应变和应力随着颗粒夹杂物百分比的增加而减小。此外,复合材料的疲劳寿命表明,夹杂物越多,材料的可靠性就越高。这项研究表明,与其他夹杂物相比,50% 颗粒夹杂物的疲劳失效循环数 (5.09E+04) 更高。而根据这项研究,10% 夹杂物的疲劳寿命最短 (4.39E+04)。DOI:https://dx.doi.org/10.4314/jasem.v24i6.3 版权:版权所有 © 2020 Ekpu。这是一篇开放获取的文章,根据知识共享署名许可 (CCL) 分发,允许无限制地使用、分发和复制,只要正确引用原始作品。日期:收到:2020 年 4 月 11 日;修订:2020 年 5 月 15 日;接受:2020 年 6 月 5 日关键词:复合材料;温度曲线;碳化硅;热疲劳为了改善电子设备的热管理,必须彻底改变最初用于管理热量的传统材料。铜和铝是用于热管理的最常用材料(Ekpu 等人,2011 年)。然而,复合材料的使用大大增强了电子应用中的热管理。因此,研究复合材料的热机械行为确实是必要的。研究人员(如 Babalola 等人,2018 年;Xiao-min 等人,2012 年;Wang 等人,2009 年)研究了复合材料,以确定其电气、物理和机械性能。Babalola 等人(2018 年)介绍了一项关于搅拌铸造法生产的 AlSiC 复合材料的电气和机械性能的研究。在他们的研究中,将获得的实验结果注入人工神经网络 (ANN) 以预测复合材料的性能。这项工作的本质旨在降低进行实验的高成本及其相关挑战。Kumar 等人(2019 年),研究了电火花加工 (EDM) 加工的铝基复合材料表面的完整性。他们的研究表明,纯 AlSiC 复合材料的表面缺陷小于添加了 B 4 C 颗粒的 AlSiC 复合材料。Hassan 和 Hussen (2017) 研究了
摘要:已发现果皮含有多种生物活性化合物,可用于草药治疗多种疾病。尚未研究 C. rostrata 果皮中存在的植物化学物质及其与人体蛋白质结合并改变其功能的潜力。因此,本研究确定了 C. rostrata 果皮提取物中类药物成分在人体中的主要蛋白质靶点以及与这些靶点相关的疾病状况。通过 GCMS 分析确定了 C. rostrata 果皮无水乙醇提取物的甲醇和正己烷馏分成分的身份。使用 SwissADME 和 SwissTargetPrediction 网络工具确定类药性(符合 Lipinski、Ghose、Veber、Egan 和 Muegge 过滤器)和类药物成分的蛋白质靶点。GCMS 分析显示正己烷和甲醇馏分中存在 49 种化合物。育亨宾衍生物 Corynan-16-羧酸,16,17-二脱氢-9,17-二甲氧基-,甲酯,(16E)-,在甲醇馏分中含量丰富 (13.33%)。正己烷馏分富含奇数链脂肪酸和植物甾醇。在馏分中鉴定出四种类药物化合物:(1) 壬二酸单乙酯;(2) 3- (2-甲氧基甲氧基亚乙基)-2,2 二甲基双环[2.2.1]庚烷;(3) 环十二醇,1-氨基甲基-,和 (4) Corynan-16-羧酸,16,17-二脱氢-9,17-二甲氧基-,甲酯,(16E)-。预测的类药化合物的主要蛋白质靶点包括碳酸酐酶 II、蛋白酪氨酸磷酸酶 1B、鞘氨醇激酶 1、麦芽糖酶-葡糖淀粉酶、腺苷 A2b 受体、P2X 嘌呤受体 7、MAP 激酶 p38 α、δ-阿片受体和 α-2 肾上腺素受体。研究结果表明,C. rostrata 外果皮含有类药植物化学物质,具有抗癌、糖尿病、疼痛和炎症疾病的潜力,提取物可能具有壮阳潜力。 DOI:https://dx.doi.org/10.4314/jasem.v26i5.18 开放获取文章:(https://pkp.sfu.ca/ojs/)这是一篇根据知识共享署名许可 (CCL) 分发的开放获取文章,允许在任何媒体中不受限制地使用、分发和复制,前提是对原始作品进行适当引用。 影响因子:http://sjifactor.com/passport.php?id=21082 谷歌分析:https://www.ajol.info/stats/bdf07303d34706088ffffbc8a92c9c1491b12470 版权:© 2022 Ajayi 等人 日期:收到:2022 年 3 月 25 日;修订:2022 年 4 月 13 日;接受:2022 年 5 月 11 日 关键词:Cola rostrata 外果皮;计算机识别;药物样成分;蛋白质靶标预测外果皮(果皮)是表皮层,它包围并保护下面的中果皮免受微生物感染和水渗透,同时确保与外界环境的气体交换(Hansmann & Combrink,2003)。许多热带水果的外果皮不能食用,每年都会造成大量植物材料浪费。最近的研究重点是将果皮从环境污染转化为财富,并利用其丰富的植物化学成分用于医疗保健目的(Torres-León 等人,2018 年;Veloso 等人,2020 年;Hikal 等人,2021 年;Osorio 等人,2021 年)。