税率 — 教育................................................................ 1.1200 运营与维护............................................... 0.4000 运输............................................................... 0.1200 营运现金............................................................... 0.0500 IMRF............................................................... 0.0500 侵权豁免............................................................... 0.9100 债券与利息....................................................... 0.1732 消防............................................................... 0.0500 社会保障............................................................... 0.0900 特殊教育....................................................... 0.0200 租赁....................................................................... 0.0500 总计................................................................. 3.0332
摘要:乙醇是燃烧、天体化学和凝聚相溶剂中研究较为基础的分子。它的特点是具有两个甲基转子以及反式(反)和左旋构象异构体,已知它们的能量非常接近。本文我们表明,基于对振动零点态的严格量子计算,使用新的从头算势能面 (PES),基态类似于反式构象异构体,但存在向左旋构象异构体的显著离域。这解释了关于识别和分离这两个构象异构体的实验问题。氘化 OH 基团时,这种“泄漏”效应会部分猝灭,这进一步证明了需要采用量子力学方法。采用扩散蒙特卡罗和全维半经典动力学计算。新的 PES 是通过 Δ 机器学习方法从预先存在的低级密度泛函理论表面开始获得的。使用相对较少的从头计算 CCSD(T) 能量,将该表面提升至 CCSD(T) 理论水平。标准测试的校正 PES 与直接从头计算结果之间的一致性非常好。还报告了侧重于反式扭转运动的一维和二维离散变量表示计算,结果与实验结果相当一致。■ 简介
- 奥地利航天局(ASA)/奥地利。- 比利时科学政策办公室(BELSPO)/比利时。- 机器建筑中央研究所(TSNIIMASH)/俄罗斯联合会。- 北京跟踪与电信技术研究所(CLTC/BITTT)/中国/中国卫星卫星发射和跟踪控制将军/中国。- 中国科学院(CAS)/中国。- 中国太空技术学院(CAST)/中国。- 英联邦科学与工业研究组织(CSIRO)/澳大利亚。- 丹麦国家航天中心(DNSC)/丹麦。- deciênciae tecnologia Aerospacial(DCTA)/巴西。- 电子和电信研究所(ETRI)/韩国。- 欧洲剥削气象卫星(Eumetsat)/欧洲的组织。- 欧洲电信卫星组织(Eutelsat)/欧洲。- 地理信息和太空技术发展局(GISTDA)/泰国。- 希腊国家太空委员会(HNSC)/希腊。- 希腊航天局(HSA)/希腊。- 印度太空研究组织(ISRO)/印度。- 太空研究所(IKI)/俄罗斯联合会。- 韩国航空航天研究所(KARI)/韩国。- 通信部(MOC)/以色列。- 穆罕默德垃圾箱拉希德航天中心(MBRSC)/阿拉伯联合酋长国。- 国家信息与通信技术研究所(NICT)/日本。- 国家海洋与大气管理局(NOAA)/美国。- 哈萨克斯坦共和国国家航天局(NSARK)/哈萨克斯坦。- 国家太空组织(NSPO)/中国台北。- 海军太空技术中心(NCST)/美国。- 荷兰太空办公室(NSO)/荷兰。- 粒子与核物理研究所(KFKI)/匈牙利。- 土耳其科学技术研究委员会(Tubitak)/土耳其。- 南非国家航天局(SANSA)/南非共和国。- 太空和高中气氛研究委员会(Suparco)/巴基斯坦。- 瑞典太空公司(SSC)/瑞典。- 瑞士太空办公室(SSO)/瑞士。- 美国地质调查局(USGS)/美国。
- 奥地利航天局(ASA)/奥地利。- 比利时科学政策办公室(BELSPO)/比利时。- 机器建筑中央研究所(TSNIIMASH)/俄罗斯联合会。- 北京跟踪与电信技术研究所(CLTC/BITTT)/中国/中国卫星卫星发射和跟踪控制将军/中国。- 中国科学院(CAS)/中国。- 中国太空技术学院(CAST)/中国。- 英联邦科学与工业研究组织(CSIRO)/澳大利亚。- 丹麦国家航天中心(DNSC)/丹麦。- deciênciae tecnologia Aerospacial(DCTA)/巴西。- 电子和电信研究所(ETRI)/韩国。- 欧洲剥削气象卫星(Eumetsat)/欧洲的组织。- 欧洲电信卫星组织(Eutelsat)/欧洲。- 地理信息和太空技术发展局(GISTDA)/泰国。- 希腊国家太空委员会(HNSC)/希腊。- 希腊航天局(HSA)/希腊。- 印度太空研究组织(ISRO)/印度。- 太空研究所(IKI)/俄罗斯联合会。- 韩国航空航天研究所(KARI)/韩国。- 通信部(MOC)/以色列。- 穆罕默德垃圾箱拉希德航天中心(MBRSC)/阿拉伯联合酋长国。- 国家信息与通信技术研究所(NICT)/日本。- 国家海洋与大气管理局(NOAA)/美国。- 哈萨克斯坦共和国国家航天局(NSARK)/哈萨克斯坦。- 国家太空组织(NSPO)/中国台北。- 海军太空技术中心(NCST)/美国。- 荷兰太空办公室(NSO)/荷兰。- 粒子与核物理研究所(KFKI)/匈牙利。- 土耳其科学技术研究委员会(Tubitak)/土耳其。- 南非国家航天局(SANSA)/南非共和国。- 太空和高中气氛研究委员会(Suparco)/巴基斯坦。- 瑞典太空公司(SSC)/瑞典。- 瑞士太空办公室(SSO)/瑞士。- 美国地质调查局(USGS)/美国。
MP2 CCSD(T)几何形状E FC EMTAδEFC EMTAΔCIS-248.06688 -248.06625 -0.00063 -248.13930 -248.13875 TS1 -NMA -248.04284 -248.04218 -0.00066 -248.11685 -248.11630.11630.00054 TS2 -NNMA -248.037553 -248.03695.0 .00043 -248.14116 -248.14081 -0.00035 N2 -248.05584(1.5)(1.5)
通信协议•UDP Unicast或多播的原始数据包•TCP上的原始数据包•CCSD sle,空间链接链接扩展CCSD框架框架协议:•TM空间数据链接协议,CCSD 132.0-B-3•AOS空间数据732.1-B-2•TC同步和通道编码,CCSD 231.0-B-4•TM同步和渠道编码,CCSD 131.0-B-3•通信操作过程,(COP-1)CCSDS 232.1-B-2遥测重播,科学数据提取,分析和离线分析•详细的数据包和参数检查•外部科学用户或其他中心的远程和级联连接•在参数,数据包和命令级别授权。此外,授权数据存储在LDAP数据库中
前期调查 自1997年青岛CCSD钻井选址研讨会以来,在江苏省东海县茅北CCSD目标区开展了野外地质和地球物理调查,目的是建立钻井区三维地质和地球物理模型,准确确定CCSD先导孔和主孔的钻孔位置。开展的工作包括1:5000和1:10000比例尺地质填图、反射地震勘探、重磁法勘探等。此外,还利用电缆取芯技术钻探了1028m深的连续取芯钻孔(PP2)。在该孔中,测量了不同深度的温度和来自孔的岩心的热导率,计算了1000m深度的地层热梯度并外推到5000m深度。在该孔内还进行了地球物理测井和VSP。根据综合研究和调查的结果,确定了CCSD导向孔和主孔的精确坐标。进一步的地质和地球物理研究,包括对岩心的研究
项目团队负责人Seunghyun Kim,高级运输专家,SG-TRA Khurram Ghafoor,高级项目官员(基础设施),PRM,CWRD项目团队成员Ankita Chaudhary,律师律师Nurlan Djenchuraev办公室律师Ankita Chaudhy性别平等部,气候变化和可持续发展部(CCSD)Chenina Meneses,Sg-Tra Jose Tiburcio Nicolas高级运营助理,主要社会发展专家(Safeguards),OSFG Ederlyn Norte,项目分析师,SG-TRA Mark Mark Allister Robis;财务管理专家;公共财务管理部,采购,投资组合和财务管理部(PPFD)Samina Sabir,性别官员;性别平等部,CCSD Joong-jae Shim,PPFD Mitzi Vina Tamayo的高级采购专家,SG-TRA ASIF TURANGZAI副项目分析师;气候变化官;气候变化,韧性和环境集群,CCSD同行评审者Yang Lu,运输专家,SG-TRA
Team leader Keshari Nandan Agrawal, Senior Investment Specialist, PSIF1, PSOD a Team members Genevieve Abel, Principal Transaction Support Specialist (Integrity), Private Sector Transaction Support Division (PSTS), PSOD Annalice Aliluya, Senior Investment Officer, Risk Analytics Unit, PSOD Irish Crest Almanzor, Associate Safeguards Officer, Office of Safeguards (OSFG) Eunice Marie ariate-de vera;副投资官(气候变化);气候变化,弹性和环境集群(CCRE); Climate Change and Sustainable Development Department (CCSD) Christine Bryant, Senior Safeguards Specialist, OSFG Ranie Catimbang, Associate Social Development Officer (Safeguards), OSFG Remife De Guzman, Investment Officer (Climate Change), CCRE, CCSD Agatha Diaz, Associate Social Development Officer (Safeguards), OSFG Toni Rose Galang-Ante, Senior Operations Assistant, PSIF1, PSOD Annabelle Giorgetti, Senior Economist, PSTS, PSOD Neeti Katoch, Gender Specialist, Gender Equality Division (CCGE), CCSD Manfred Kiefer, Principal Economist, PSTS, PSOD Odette Lana, Associate Social Development Officer (Gender and Development), CCGE, CCSD Aarti Mehra, Principal Investment Specialist (Guarantees and Syndications), Guarantees and Syndications部门,PSOD A EIICHI MURASHIMA,投资专家,PSIF1,PSOD Justine Padiernos,经济官,PSTS,PSTS,PSOD Noel Peters,PSOD Shivendra Sharma,PSOD Shivendra Sharma,PSOD MRIGA SOLANKE DIVERSTIENS INDIOND INDIOND INDIOND ANDIONT ANDIONT ANDINE律师,PSOD Shivendra Sharma总监,PSOD SHIVENDRA SHARMA,PSOD SHIVENDRA SHARMA,PSOD SHIVENDRA,PSOD NOEL PETERS。在准备任何国家计划或策略,为任何项目提供资金,或通过对本文档中特定地区或地理领域的任何指定或参考,亚洲发展银行不打算就任何领土或地区的法律或其他地位做出任何判断。
T 1 态。对于三重态,CCSD(T) 和 CASSCF 的结果大致相同,CCSD 的结果要差得多(图 S1b)。在分而治之的 q-UCCSD 方法中加入自旋翻转似乎是必不可少的,这导致垂直激发能量相对于 CASSCF 提高了约 1.2 eV。由于三重态的 HF 参考是 |11 20>(平面外三重态,平面内单重态),因此自旋翻转允许的 q-UCCSD 的优越性能的一个可能解释是它可以访问 |20 11> 配置(平面外单重态,平面内三重态),这对整体波函数有重要贡献(参见正文中的图 4a)。特别值得注意的是,带有自旋翻转的 q-UCCSD 方法找到了与 CASSCF 相同的最小值,并且总体上比 CCSD 产生了更好的结果。由于起点不佳,零 BLA 几何仍然很困难,尽管这种电子状态比 S0(一个 π 系统中四个近简并自旋轨道中的两个电子)的病态性要小。