摘要:共价闭合的哑铃形DNA递送载体,包括双端的双链基因和两端的单链发夹环,代表了一种安全,稳定且有效的替代病毒和其他基于非病毒DNA的矢量系统。与质粒和DNA微圆相反,哑铃可以通过辅助函数通过环与靶向递送或成像结合。在这里,我们研究了三年期N-乙酰乳糖苷(GALNAC3)或CD137/4-1BB结合适体(APTCD137-2)的同二聚体的非共价连接,以通过与诸如寡核的元素交付或耐心的近似元素送达或纳入的dumbbell vector vector循环。将哑铃环的大小从4个核苷酸扩大到71个核苷酸并不会损害基因表达。GalNAC3和APTCD137-2残基通过互补寡核苷酸成功地连接到扩展的哑铃环上。DNA和RNA寡核苷酸基基核苷酸 - GALNAC3共轭物被肝母细胞瘤衍生的人体组织培养细胞(HEPG2)从细胞培养基中吸收,具有可比的效率。RNA寡核苷酸连接的共轭物触发了稍高的基因表达水平,这可能是由于RNASEH介导的接头裂解,GALNAC3残基中的哑铃释放,以及更多的未偶联哑铃DNA的核靶标。在体外确认了RNASEH触发的RNA接头裂解。最后,我们以表达肝癌细胞特异性RNA反式解放的自杀RNA和GalNAC3残基的哑铃载体。哑铃与两个GalNAC3残基共轭时,当添加到细胞培养基中时,触发了显着水平的细胞死亡。哑铃矢量偶联物可以探索靶向递送和基因治疗应用。
此药品需要接受额外监测。这将可以快速识别新的安全信息。请医疗保健专业人员报告任何疑似不良反应。有关如何报告不良反应,请参见 4.8 节。 1. 药品名称 Kymriah 1.2 × 10 6 – 6 × 10 8 细胞分散液,用于输注 2. 定性和定量成分 2.1 一般描述 Kymriah (tisagenlecleucel) 是一种经过基因改造的基于自体细胞的产品,含有使用慢病毒载体体外转导的 T 细胞,该慢病毒载体表达抗 CD19 嵌合抗原受体 (CAR),包含鼠抗 CD19 单链可变片段 (scFv),通过人 CD8 铰链和跨膜区连接到人 4-1BB (CD137) 共刺激结构域和 CD3-zeta 信号结构域的细胞内信号链。 2.2 定性和定量组成 Kymriah 的每个患者专用输液袋均含有批次依赖性浓度的 tisagenlecleucel,这些自体 T 细胞经过基因改造,可表达抗 CD19 嵌合抗原受体(CAR 阳性活 T 细胞)。该药品包装在一个或多个输液袋中,总共含有 1.2 × 10 6 至 6 × 10 8 个 CAR 阳性活 T 细胞分散在冷冻保存液中。不同患者批次的细胞组成和最终细胞数量各不相同。除了 T 细胞外,还可能存在自然杀伤 (NK) 细胞。每个输液袋含有 10-30 mL 或 30-50 mL 细胞分散液。药品的定量信息(包括要使用的输液袋数量(见第 6 节))在用于治疗的药品随附的批次特定文件中提供。已知作用的辅料 本药品每毫升含 2.43 毫克钠,每剂量含 24.3 至 121.5 毫克钠。每袋每毫升含 11 毫克葡聚糖 40 和 82.5 毫克二甲基亚砜 (DMSO)。有关辅料的完整列表,请参阅第 6.1 节。 3. 药物形式 输液分散液 无色至微黄色分散液
抽象背景ATOR-1017(evunzekibart)是一种靶向共刺激受体4-1BB的人类激动剂免疫球蛋白G4抗体(CD137)。ATOR-1017在肿瘤环境中激活T细胞和天然杀伤细胞,从而导致免疫介导的肿瘤细胞死亡。在这是一个人类,多中心,I期研究的方法中,ATOR-1017每21天静脉内服用ATOR-1017作为单一疗法,以对患有多种护理标准治疗的晚期,无法切除的实体瘤患者进行单一疗法。该研究使用单个患者队列进行快速剂量升级高达40 mg;此后,经过改进的3+3设计最大900毫克。升级剂量,直到疾病进展,不可接受的毒性或戒断同意。研究的主要目标包括通过评估不良事件和限制剂量毒性(DLTS)来确定最大耐受剂量(MTD)。次要目标包括确定药代动力学,免疫原性和使用CT扫描评估的临床疗效,使用实体瘤中的免疫反应评估标准进行了评估。探索性目标包括对免疫系统生物标志物的药效学(PD)评估。筛查的27例患者的结果,25例接受了ATOR-1017的治疗。研究的中位时间为13.1周(范围4.3-92.3)。未达到ATOR-1017的MTD。在25名患者中有13例(52%)报告了与治疗相关的不良事件(TRAES);最常见的(≥10%)是疲劳(n = 4(16.0%))和中性粒细胞减少症(n = 3(12.0%)患者)。没有因Traes而停止的患者,也没有观察到DLT。五名患者经历了严重的(3级)TRAE;中性粒细胞减少症(n = 2),热中性粒细胞减少症(n = 1),胸痛(n = 1),肝酶增加(n = 1),白细胞减少症和血小板减少症(n = 1)。药代动力学数据显示出近似的剂量 - 偏移动力学。PD生物标志物(包括可溶的4-1BB)的剂量依赖性增加表示靶向介导的生物学活性。最佳反应是25例患者中有13例(52%)的稳定疾病,在6例患者中维持6个月或更长时间(24%)。ATOR-1017的结论治疗在所有剂量水平上都是安全且耐受性的,并且表现出生物学活性。此外,在经过大量预处理的人群中,几乎三分之一的患者经历了持久的稳定疾病。令人鼓舞的安全性和初步疗效数据保证
nivolumab(Opdivo)Oxaliptin Capecitabine指示(ICD10)C15,C16在开处方之前检查最新的Blueteq资格标准。Blueteq注册所需。(www.england.nhs.uk/pablication/national-cancer-drugs-fund-list/)(NIV21)(NIV22)1。Nivolumab in combination with platinum and fluoropyrimidine-based chemotherapy for previously untreated advanced unresectable or metastatic HER-2 negative adenocarcinomas of the stomach, gastro-oesophageal junction or oesophagus which express PD-L1 with a combined positive score of 5 or more, who have not received any previous immunotherapy except as part of adjuvant therapy, completed at least 6 months ago without进展。ps 0或1。(TA857)2。nivolumab与铂和基于氟嘧啶的化学疗法结合使用,用于以前未经治疗的不可切除的晚期不可切除的,不可切除的或复发或转移性或转移性或转移性的食管细胞PD-L1表达≥1%的肿瘤细胞PD-L1表达,并与pd-L1组合的阳性或pd-l1组合的阳性或pd-pd-pd-pd-pd-pd-pd-pd-pd-pd-pd-pd-pd-pd-pd-1 OX40或抗周毒性T淋巴细胞相关抗原4(CTLA-4)处理。PS0或1。管理平板电脑应分开12小时。在饭后30分钟内用水吞咽,或溶解在200ml Luke温水中,彻底搅拌(如果不呈现的话,可以添加南瓜)。反遗传学中等疾病的第1天循环1至8低突出风险第2至14循环1至8个周期1至8最小的突出风险每28天周期9开始,需要并发药物(TA865)IV型循环1至8天1 Nivolumab 360mg **在100ml氯化钠IV输注30分钟内Oxaliplatin 130mg/m 2 In#ml葡萄糖5%IV在2小时内2小时1至14 capecitabine 1000mg/m 2 twiCe/m 2 twice twiCe 5%IV输液(2000毫米) **if oxaliplatin and capecitabine are discontinued nivolumab 480mg every 28 days must be used instead Cycle 9 every 28 days up to 2 calendar years from treatment start NIVOLUMAB 480mg in 100ml sodium chloride IV infusion over 30 minutes # diluent and diluent volume for dose prescribed as per national standardised product specification CYCLE FREQUENCY AND NUMBER OF CYCLES Combination every 21 days for 8 cycles nivolumab单一疗法从第9周期治疗到进展每28天,直到1个周期组合开始日期(不论治疗中的任何断裂),最多2个日历年。
atezolizumab(tecentriq)bevacizumab紫杉醇卡铂指示(ICD10)C34在处方之前检查最新的Blueteq资格标准。Blueteq注册所需。(www.england.nhs.uk/pablication/national-cancer-drugs-fund-list/)(ate4)(ate5)1。对局部晚期或转移性期IIIB,IIIC或IV非小质细胞肺癌的第一线治疗患有疾病,该疾病在潜在地治疗NSCLC的局部治疗后复发了NSCLC的治疗后(没有症状活性的脑转移症或液甲肾上腺素转移酶),而没有手术/化学疗法的疗法/尿液疗法疗法和液光疗法的41 pd-tructoter-4 EGFR和ALK突变。该患者尚未接受过任何对NSCLC或患者的全身治疗,或者通过化学疗法或化学放疗或检查点抑制剂免疫治疗完成了最后的治疗,作为辅助/新辅助/维持治疗的一部分抗原4(CTL-4)抗体在首次诊断局部复发或转移性疾病之前至少6个月完成了疾病进展。ps 0或1,适合atezolizumab,bevacizumab,carboplatin(AUC 6)和Paclitaxel(200mg/m²)的组合。(TA584)2。适合于atezolizumab,bevacizumab,卡泊粉素(AUC 6mg/ml/min)和紫杉醇(200mg.m²)的组合。ps 0或1,适合atezolizumab,bevacizumab,carboplatin(AUC 6)和Paclitaxel(200mg/m²)的组合。(TA584)对EGFR激活突变阳性或ALK突变阳性或ROS1突变阳性或MET EXON或MET EXON或KRAS G12C或RET或BRAF突变阳性IIIB,IIIC或IV期或疾病的治疗,在与NSCLC进行局部治疗后,通过手术/化学疗法治疗的NSCLC治疗后,通过局部治疗的局部治疗或NSCLC进行了疗法治疗后,该疗法的局部疗法/放射性疗法疗法治疗后,该疗法在局部治疗后重复治疗,而NSCLC进行了治疗。在适当的靶向TKI治疗失败后,手术/化学疗法/放射疗法局部晚期或转移性非质量(没有症状活跃的脑转移或瘦脑转移酶)非小细胞肺癌。尚未接受抗PD-1,抗PD-L1,抗PD-L2,抗CD137或抗胞毒性T淋巴结相关抗原-4(CTL-4)抗体的治疗在上次免疫治疗的日期与复发或转移性疾病的首次诊断复发的日期之间经过的几个月。
早在古埃及和希腊文明时期,癌症患者就接受过彻底的外科手术治疗。令人惊讶的是,直到 19 世纪末,X 射线的发现及其在肿瘤治疗中的应用才为肿瘤医学提供了第一种现代治疗方法。在随后的 40-50 年里,主流治疗方案仍然以这些和其他彻底的干预措施为中心,旨在彻底根除转移前的疾病。然而,经常无法切除所有的肿瘤块、手术或放射干预本身带来的毁灭性身体创伤、肿瘤的转移性扩散或这些因素的任何组合,往往导致患者发病率高和/或死亡率高。自从彻底的外科手术和放射干预出现以来,癌症治疗取得了巨大进步。化疗在第二次世界大战期间和之后逐渐成熟,至今仍是许多治疗环境中的标准治疗方法。然而,用化疗治疗癌症患者通常需要在达到最大耐受剂量之前注射足够的药物杀死肿瘤,或者达到杀死患者的剂量之间找到微妙的平衡。癌症治疗进化的第三个阶段是生物制剂的出现。可以说,生物制剂已经改变了癌症治疗的格局。最近,生物制剂让我们能够利用我们对免疫系统在防止肿瘤生长和塑造肿瘤免疫原性方面所发挥的复杂双重作用的日益了解,通过促进选择能够避免宿主免疫反应的肿瘤细胞来保护肿瘤生长。在本文中,我们回顾了生物制剂的格局,并解释了为什么我们的公司 Crescendo Biologics 对前列腺特异性膜抗原 (PSMA) 作为癌症靶点感兴趣。旨在操纵免疫系统重新激活抗肿瘤免疫反应并克服导致肿瘤逃逸的途径的生物免疫疗法已经为一些晚期疾病患者带来了变革。早期的癌症免疫疗法包括使用 IL-2 等细胞因子来调节免疫细胞功能,但高剂量的 IL-2 会导致毛细血管渗漏和脓毒症样综合征,从而导致多器官衰竭 1 。较新的针对免疫检查点抑制剂(如 CTLA-4、PD-1 或 PD-L1)的抗体通过解除抗肿瘤免疫反应的制动而起作用,而已经开发出的 utomilumab 或 urelumab 等抗体能够激动 T 细胞共刺激受体 CD137 (4-1BB),从而驱动强大的 T 细胞活化。每种方法都能够提供极其有效的免疫介导的癌细胞死亡(以及一些潜在的“治愈”结果)。然而,每种方法也与其自身的各种治疗限制性、器官特异性炎症副作用有关。
glikosfingolipids(GSL)是细胞膜的关键组成部分,需要维持膜的功能和流动性,并且还参与了许多重要的细胞过程,包括凋亡和耐药性。癌症的进展通常与GSL表达的变化有关,但是关于大多数GSL物种的分子机制的详细研究仍然有限。早期的研究表明,半乳糖酰二酰胺(Galcer)及其合成酶,陶瓷半乳糖替代酶(UGT8)在乳腺癌(BC)和耐药性(Sheepdog等人 dival。 div al。 div al。2013)。ugt8是肿瘤侵袭性的关键指标,也是预测乳腺癌肺转移酶的潜在标志物(Dziegiel等人。2010)。Galcer充当抗遗传分子,增加了化学疗法诱导的乳腺癌细胞对凋亡的抗性。然而,从galcer到凋亡调节的确切信号通路尚不清楚。先前发现,Galcer的积累与促凋亡蛋白的表达降低相关,而mRNA TNFR1B/CD120B和TNFR9/CD137以及抗凋亡mRNA和BCL2蛋白的表达增加。为了进一步研究Galcer和这些凋亡基因之间的调节轨迹,使用了两个细胞模型:一种过表达模型,其中MCF.7细胞被UGT8和Galerce隔离了,以及使用三重阴性细胞系MDA-MB-231的功能丧失模型,其中UGT8和Galcer与CRIRPR/Cerpr/cers9沉默了。我们的结果表明,在两个细胞模型中,TNFRSF1B和TNFRSF9的mRNA水平的变化是Galcer变化这些基因启动子活性变化的结果。在过表达模型中,增加的Bcl2 mRNA是启动子活性增加的结果,而在模型损失模型中,Bcl2水平的降低与mRNA稳定性降低有关。这些转录变化与关键转录因子和凋亡调节剂的变化有关,p53。在负细胞系中,观察到p53水平升高,p53的生长有助于凋亡的严重程度,通过治疗阿霉素的治疗证实,在总p53水平及其磷酸化时观察到变化。通过使用siRNA抑制mRNA p53表达并测试这些基因的启动子和mRNA水平的活性,还通过抑制mRNA p53表达来调节BCl2,TNFRSF1B和TNFRSF9基因的直接参与。p53表达调控是通过MDM2蛋白发生的,MDM2蛋白在阳性细胞系中相对于Galcer过度氧化。反过来,MDM2受该法案的调节,该行为在含有galcer的细胞系中激活。最终发现,通过与表皮生长因子(EGFR)受体的直接或间接相互作用,Galcer以独立于配体的方式激活该受体。这种激活导致了文件跟踪的激活,这导致对阳性细胞系中的凋亡和药物相对于galcer的抗性。
