摘要:细胞分裂调节剂在神经祖细胞(NPC)增殖和分化中起着至关重要的作用。细胞分裂周期25C(CDC25C)是Cdc25磷酸酶家族的成员,通过激活细胞周期蛋白依赖性蛋白激酶(CDKS),可以正向调节细胞分裂。ever,被敲除cdc25c基因的小鼠被证明是可行的,由于cdc25a和/或cdc25b的遗传补偿而缺乏明显的表型。在这里,我们通过使用子宫电穿孔中的NPC中击倒CDC25C来研究CDC25C在发育大鼠大脑中的功能。我们的结果表明,CDC25C在维持皮质发育过程中NPC的增殖状态中起着至关重要的作用。CDC25C的敲低导致早期细胞周期出口和NPC的过早分化。我们的研究发现了CDC25C在NPC分裂和细胞命运确定中的新作用。此外,我们的研究还提出了一种研究基因作用的功能方法,该方法通过在体内敲除皮质神经发生中引起遗传补偿。
遗传改性细胞的基因分型是针对转基因和基因组编辑的至关重要的步骤,例如CRISPR/CAS等系统。检测基因组编辑事件可以与所使用的基因分型方法直接相关,该方法受其成本影响,因为许多实验需要分析大量样品。这项研究的目的是比较基因组DNA(GDNA)提取的直接裂解方法的性能,以检测原代山羊细胞中的敲蛋白和敲除。最初,使用差异量(1,000、5,000和10,000个细胞)和goat Ortiparts(fibroblblasts and fibroblblasts and gote anctermarem Migalsmary Migalmary Migalmary Migalmary Migatiars Migatiars Migatiars)测试了三种GDNA提取方案(方案A,水中的温度A; Prote变性/冻结;小(GAPDH)和大扩增子(HLF转基因)的PCR扩增。所有方案在检测小扩增子方面均成功;但是,在GMEC中,只有协议B仅导致有效的扩增(协议A - 0%,协议B- 93%,协议C- 13.33%,p <0.05)。In a proof- of-principle experiment, the TP53 gene was knocked out in GMECs by CRISPR/Cas9-medi- ated deletion while constructs containing the anti-VEGF monoclonal antibody (pBC-anti- VEGF) and bacterial L-Asparaginase (pBC-ASNase) transgenes were knocked-in sepa- rately in fibroblasts.使用协议B和PCR进行了成功编辑的检测。根据PCR,PBC-ASNase和PBC-Anti-VEGF转基因的整合速率分别为93.6%和72%。使用CRISPR/CAS9对TP53缺失在GMEC中的双重编辑效率为5.4%。我们的结果表明,方案B(热变性/蛋白酶K)可以用作一种廉价且快速的方法,用于检测不同类型的原代山羊细胞中的遗传修饰,其效率率与先前使用提取试剂盒或更复杂的蛋白酶K配方中先前描述的值一致。
肝细胞癌 (HCC) 是癌症死亡的第二大原因,这表明迫切需要有效的干预药物或策略来对抗 HCC。在本研究中,我们首先发现吉非替尼(一种 EGFR 抑制剂)和 BI 6727(一种 pol o 样激酶 1 (PLK1) 抑制剂)的组合可以显著抑制 HCC 细胞的细胞增殖,从而减弱 HCC 细胞对吉非替尼的获得性耐药性。有趣的是,我们的结果表明吉非替尼与 BI6727 组合的抗肿瘤作用与 G2/M 停滞有关。此外,进一步的研究表明,BI6727 可以通过泛素化依赖性途径下调细胞分裂周期 25C (Cdc25C) 的蛋白水平,随后诱导 G2/M 停滞。此外,在吉非替尼与BI6727联合使用时,HCC细胞中两个关键的检查点蛋白毛细血管扩张性共济失调突变(p-ATM)/ ATM和Rad-3相关(p-ATR)以及DNA损伤的另一个标志性磷酸化H2AX (γ-H2AX)受到正向调节。这些结果表明联合治疗诱导的G2/M停滞与DNA损伤密切相关。总之,本研究发现吉非替尼与BI6727协同作用可以显著促进DNA损伤并克服HCC细胞对吉非替尼的获得性耐药性。我们的研究为EGFR抑制剂和PLK1抑制剂联合用于HCC的临床治疗提供了一种有希望的方法。
抽象T-LAK原始的蛋白激酶(TOPK)过表达是多种癌症的特征,但在大多数表型正常组织中都没有。因此,Topk表达效果和靶向TOPK靶向药剂的发展增强了对目标疗法发展的未来潜力的希望。在本文中提出的结果证实了TOPK作为治疗实体瘤的潜在目标,并证明了与放射治疗结合使用时TOPK抑制剂的效率(OTS964)。使用H460和CALU-6肺癌异种移植模型,我们表明,TOPK的药物抑制作用增强了分馏辐射的效率。此外,我们还提供了体外证据表明,在S阶段,TOPK在迄今为止扮演着未知的作用,表明TOPK耗竭会在复制应力和外源性DNA损伤的条件下增加叉子的失速和塌陷。显示TOPK的瞬时敲低可损害叉子失速中的恢复,并增加与H460肺癌细胞中复制相关的单链DNA灶的形成。我们还表明,TOPK与CHK1和CDC25C直接相互作用,这是检查点信号传导路径中的两个关键参与者在复制叉倒塌后激活。因此,这项研究提供了对TOPK活性支持癌细胞存活的机制的新见解,从而促进了对复制应力和DNA损伤的响应检查点信号传导。
