尽管在弥漫性大 B 细胞淋巴瘤 (DLBCL) 和套细胞淋巴瘤 (MCL) 患者的治疗方面取得了重大进展,但由于耐药性的出现和随后的疾病进展,复发患者的预后仍然很差。迫切需要寻找这些疾病的新靶点和治疗策略。在这里,我们报告 MCL 和 DLBCL 都对转录靶向药物极其敏感,特别是 THZ531,一种细胞周期蛋白依赖性激酶 12 (CDK12) 的共价抑制剂。通过实施药物基因组学和基于细胞的药物筛选,我们发现 THZ531 可抑制致癌转录程序,尤其是 DNA 损伤反应通路、MYC 靶基因和 mTOR-4EBP1-MCL-1 轴,从而有助于体外显著抑制淋巴瘤。我们还从头鉴定和建立了获得性 THZ531 耐药淋巴瘤细胞,这些细胞是由 MEK-ERK 和 PI3K-AKT-mTOR 通路过度激活以及多药耐药性-1 (MDR1) 蛋白上调所致。值得注意的是,EZH2 抑制剂通过竞争性抑制 MDR1 逆转了对 THZ531 的耐药性,并与 THZ531 联合使用,在体外协同抑制了 MCL 和 DLBCL 的生长。我们的研究表明,CDK12 抑制剂单独使用或与 EZH2 抑制剂联合使用,有望成为难治性 DLBCL 和 MCL 的新型有效治疗方法。
摘要:靶向蛋白质降解 (TPD) 是一种新兴的治疗方法,用于选择性消除与疾病相关的蛋白质。虽然分子胶水降解剂表现出类似药物的特性,但它们的发现传统上是偶然的,并且通常需要事后合理化。在这项研究中,我们展示了使用粘合部分合理设计分子胶水降解剂的方法。通过将化学粘合部分附加到几种小分子抑制剂上,我们成功地将它们转化为降解剂,从而无需特定的 E3 泛素连接酶募集剂。具体而言,我们发现将疏水性粘合部分整合到细胞周期依赖性激酶 12 和 13 (CDK12/13) 双重抑制剂中可以募集 DNA 损伤结合蛋白 1 (DDB1),从而将高分子量二价 CDK12 降解剂转化为有效的单价 CDK12/13 分子胶水降解剂。我们还展示了将半胱氨酸反应弹头连接到 BRD4 抑制剂上,通过招募 DDB1 和 CUL4 相关因子 16 (DCAF16) E3 连接酶将其转化为降解剂。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该版本的版权持有人于2025年1月19日发布。 https://doi.org/10.1101/2025.01.15.633177 doi:biorxiv preprint
对复杂动物行为的自动检测仍然是神经科学的挑战。developments具有大量高级自动化行为检测,并允许高通量临床前和机械研究。需要进行集成的硬件和软件解决方案,以促进在行为神经基因的领域采用这些进步,尤其是对于非计算实验室而言。我们使用开放式领域发表了一系列论文,以注释复杂行为,例如修饰,姿势和步态以及更高层次的结构,例如生物年龄和痛苦。在这里,我们向社区介绍了综合的啮齿动物表型平台,JAX动物行为系统(JABS),以进行数据获取,基于机器学习的行为注释和分类,分类者共享和遗传分析。JABS数据采集模块(JABS-DA)允许统一数据收集,其3D硬件设计和软件的组合用于实时监视和视频数据收集。jabs-Active学习模块(JABS-AL)允许行为注释,分类训练和验证。我们介绍了一个基于图形的新型框架(Ethograph),该框架能够对jabs-al分类器的有效比较。jabs-分析和集成模块(jabs-ai),一种Web应用程序,促进用户部署并共享对jabs培训的任何分类器,从而减少了行为注释所需的精力。这可以将遗传学用作适当行为分类器选择的指南。它支持训练有素的刺戳分类器和下游遗传分析(遗传力和遗传相关性)的推断和共享,这些数据集涉及168个策划的数据集,这些数据集涉及我们与这项研究一起公开释放的168个小鼠菌株。此开源工具是一个生态系统,它允许神经科学和遗传学社区共享高级行为分析,并减少进入该新领域的障碍。
摘要:对于细胞周期蛋白依赖性激酶12和13(CDK12和CDK13)的有效抑制剂的合理设计和开发在很大程度上取决于对动态抑制构象的理解,但很难通过常规特征工具来实现。在此,我们整合了赖氨酸反应性分析(LRP)和天然MS(NMS)的结构质谱法(MS)方法,以系统地询问动态分子相互作用和CDK12/CDK13-CYCLIN K(cyck)的整体蛋白质组装,而小型分解物的调节构成。基本结构见解,包括抑制剂结合袋,结合强度,界面分子细节和动态构象变化,可以从LRP和NMS的互补结果中得出。我们发现抑制剂SR-4835结合可以极大地破坏CDK12/CDK13-CYCK相互作用,以异常的变构激活方式,从而为激酶活性抑制提供了一种新颖的替代方法。我们的结果强调了LRP与NMS的巨大潜力,用于评估和合理设计分子水平的有效激酶抑制剂。
Jean Ching-Yi Tien, 1,2 Jie Luo, 1,2,14 Yu Chang, 1,2,14 Yuping Zhang, 1,2,14 Yunhui Cheng, 1,2,14 Xiaoju Wang, 1,2 Jianzhang Yang, 3,4 Rahul Mannan, 1,2 Somnath Mahapatra, 1,2 Palak Shah, 1,2 Xiao-Ming Wang, 1,2 Abigail J. Todd, 1,2 Sanjana Eyunni, 1,2 Caleb Cheng, 1 Ryan J. Rebernick, 1,2 Lanbo Xiao, 1,2 Yi Bao, 1,2 James Neiswender, 5 Rachel Brough, 5 Stephen J. Pettitt, 5 Xuhong Cao, 1,2 Stephanie J.), arul@med.umich.edu (A.M.C.)https://doi.org/10.1016/j.xcrm.2024.101758
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
尽管癌症中的体细胞结构变化含量丰富(SV),但其形成的基本分子21机制仍不清楚。在这里,我们使用6,193个全基因组测序22个肿瘤来研究转录和DNA复制碰撞对基因组不稳定的贡献。在三个独立的泛伴侣队列中对稳健的SV签名后24,我们检测到转录依赖性的复制链偏置,转录的预期足迹-25复制碰撞(TRC),在大型串联复制(TDS)中。大型TD富含26个雌性的胃肠道和前列腺癌。它们与TP53,CDK12和SPOP中的27例患者生存和突变有关。灭活CDK12时,细胞28显示出更多的TRC,R-loops和大型TD。抑制G2/M检查点29蛋白(例如WEE1,CHK1和ATR),有选择地抑制30 CDK12中缺乏细胞的生长。我们的数据表明,由于TRC而引起的癌症形式的大型TD,它们的存在可以用作预后和治疗的生物标志物。32
癌症中抽象的DNA修复缺陷可能会导致特征性突变模式,例如BRCA1/2的缺乏和PARP抑制剂的疗效预测所示。我们基于全基因组突变模式(包括结构变异,Indels和碱基替代特征)的145个单个DNA损伤反应基因的功能丧失(LOF)训练和评估。我们鉴定了24个基因,它们的缺乏症可以很好地预测,包括BRCA1/2,MSH3/6,TP53和CDK12 LOF变体的预期突变模式。cdk12与串联重复相关,我们在这里证明,这种关联可以准确预测前列腺癌的基因缺乏(接收器操作员特征曲线下的面积= 0.97)。我们的新型关联包括ATRX,IDH1,HERC2,CDKN2A,PTEN和SMARCA4的单或双重LOF变体,并且我们的系统方法产生了预测模型的目录,这可能提供了用于进一步研究和开发治疗的目标,并有助于指导治疗。
