全身化疗对三阴性乳腺癌 (TNBC) 有效,但通常伴有严重的副作用。本文,我们报告了一种针对促黄体激素释放激素 (LHRH) 受体且对肿瘤微环境有响应的纳米颗粒系统,可选择性地将化疗药物递送至 TNBC 细胞。该递送系统(称为“LHRH-DCM”)包含聚乙二醇和树枝状胆酸作为胶束载体、可逆胶束内二硫键作为氧化还原响应交联,以及合成的高亲和力 (D-Lys)-LHRH 肽作为靶向部分。LHRH-DCM 表现出高药物负载效率、最佳粒径、良好的胶体稳定性和谷胱甘肽响应性药物释放。正如预期的那样,LHRH-DCMs 通过受体介导的内吞作用更有效地内化到人 TNBC 细胞中,当用紫杉醇 (PTX) 封装时,对这些癌细胞的细胞毒性比非靶向对应物更强。此外,近红外荧光和核磁共振成像表明,LHRH-DCMs 促进了三种不同的乳腺癌动物模型中的肿瘤分布和有效载荷的渗透,包括细胞系来源的异种移植 (CDX)、患者来源的异种移植 (PDX) 和转基因乳腺癌。最后,体内治疗研究表明,在原位 TNBC 模型中,PTX-LHRH-DCMs 的表现优于相应的非靶向 PTX-DCMs 和目前的临床制剂 (Taxol®)。这些结果为 TNBC 的精准药物输送方法提供了新的见解。
ACS American Community Survey AERMOD American Meteorological Society/EPA Regulatory Model dispersion modeling system ANSI American National Standards Institute APCD air pollution control device API American Petroleum Institute ASME American Society of Mechanical Engineers BACT best available control technology BLR basic liquid epoxy resins BPT benefit per-ton BSER best system of emissions reduction BTEX benzene, toluene, ethylbenzene, and xylenes CAA Clean Air Act CBI confidential business information CDX Central Data Exchange CEDRI Compliance and Emissions Data Reporting Interface CFR Code of Federal Regulations CMPU chemical manufacturing process unit CO carbon monoxide CO 2 carbon dioxide CPI consumer price index CRA Congressional Review Act EAV equivalent annual value ECHO Enforcement and Compliance History Online EFR external floating roof EIS Emission Information System EPA Environmental Protection Agency EPPU EPPU弹性产品工艺单元ERT电子报告工具ETO氧化氧化物FTIR傅里叶变换红外HAP危险空气污染物(S)每小时每小时磅/小时磅/年磅每年LDAR泄漏检测和维修
背景:低级别浆液性卵巢和腹膜癌 (LGSC) 是一种罕见疾病,关于其临床和基因组学状况的数据很少。方法:对 1996 年至 2019 年期间在 MITO 中心确诊为 LGSC 的患者进行了回顾性分析。评估了治疗后的客观缓解率 (ORR)、无进展生存期 (PFS) 和总生存期 (OS)。此外,使用下一代测序 (NGS) FoundationOne CDX (Foundation Medicine®) 评估了 56 例患者的肿瘤分子谱。结果:共确定 128 名具有完整临床资料且病理确诊为 LGSC 的患者。首次和后续治疗的 ORR 分别为 23.7% 和 33.7%。 PFS 为 43.9 个月(95% CI:32.4 – 53.1),OS 为 105.4 个月(95% CI:82.7 – 未达到)。最常见的基因变异是:KRAS(n = 12,21%)、CDKN2A/B(n = 11,20%)、NRAS(n = 8,14%)、FANCA(n = 8,14%)、NF1(n = 7,13%)和 BRAF(n = 6,11%)。意外的是,发现了致病性 BRCA1(n = 2,4%)、BRCA2(n = 1,2%)和 PALB2(n = 1,2%)突变。结论:MITO 22 表明 LGSC 是一种异质性疾病,其临床行为对标准疗法有反应,其分子改变也不同。未来的前瞻性研究应根据肿瘤的生物学和分子特征测试治疗方法。临床试验注册:本研究在 ClinicalTrials.gov 上注册号为 NCT02408536。
全身化疗对三阴性乳腺癌 (TNBC) 有效,但通常伴有严重的副作用。本文,我们报告了一种针对促黄体激素释放激素 (LHRH) 受体且对肿瘤微环境有响应的纳米颗粒系统,可选择性地将化疗药物递送至 TNBC 细胞。该递送系统(称为“LHRH-DCM”)包含聚乙二醇和树枝状胆酸作为胶束载体、可逆胶束内二硫键作为氧化还原响应交联,以及合成的高亲和力 (D-Lys)-LHRH 肽作为靶向部分。LHRH-DCM 表现出高药物负载效率、最佳粒径、良好的胶体稳定性和谷胱甘肽响应性药物释放。正如预期的那样,LHRH-DCMs 通过受体介导的内吞作用更有效地内化到人 TNBC 细胞中,当用紫杉醇 (PTX) 封装时,对这些癌细胞的细胞毒性比非靶向对应物更强。此外,近红外荧光和核磁共振成像表明,LHRH-DCMs 促进了三种不同的乳腺癌动物模型中的肿瘤分布和有效载荷的渗透,包括细胞系来源的异种移植 (CDX)、患者来源的异种移植 (PDX) 和转基因乳腺癌。最后,体内治疗研究表明,在原位 TNBC 模型中,PTX-LHRH-DCMs 的表现优于相应的非靶向 PTX-DCMs 和目前的临床制剂 (Taxol®)。这些结果为 TNBC 的精准药物输送方法提供了新的见解。
1。Frampton GM等。 nat生物技术。 2013; 31:1023–1031。 2。 suh JH等人。 肿瘤学家。 2016; 21:684–691。 https://medally.roche.com/global/en/oncology/amp-eu-2024/medical-material/med-material/amp-eu-2024-poster-zhang-evolution-of-a-a-comprehend-pdf.html?utm_来源= brochure_pdf&utm_medium = qrcode&utm_campaign = avenio_cgp_v2&utm_id = dia-00288-24-p0090&utm_content = product_info 3。 Foundation®CDX技术标签,2023。 可在以下网址提供:https://info.foundationmedicine.com/hubfs/ fmi%20labels/foundationone_cdx_label_technical_info.pdf(2024年7月访问)。 4。 Foundation® -liquid技术规格,2023。 可在:https://assets.ctfassets.net/w98cd481qyp0/wvem7vticyr0st5c1vbu7/fd055e0476183a6acd4aacd4ae6b583e3aa00/f1lcdx_技术_sspecs_s_072024.pddfdffbu7/fd05e0476183a6aacd4ae6b583ae.p.p.ptd.24.pdfdffbu7/wvem7vticyr0st5c1vbu7/ 5。 Foundation® -Heme技术规格,2021。 可在:https://assets.ctfassets.net/w98cd481qyp0/42r1cte8vr4137cahrsaen/baf91080cb3d78a52adad.adad.adaada10c6358fa130/foundation foundation _ heme_heme_technical_specect.ptf(Quptiaciations.pdf)(pdf)( 6。 JE等。 血。 2016; 127:3004–3014。 7。 Clark Ta等。 J MOL诊断。 2018; 20:686–702。 8。 Chalmers Zr等。 基因组医学。 2017; 9:34。 9。 Schrock AB等。 Clin Cancer Res。 2016; 22:3281–3285。 10。 Ross JS等。 Gynecol Oncol。 2013; 130:554–559。 11。 Hall MJ等。 J Clin Oncol。Frampton GM等。nat生物技术。2013; 31:1023–1031。 2。 suh JH等人。 肿瘤学家。 2016; 21:684–691。 https://medally.roche.com/global/en/oncology/amp-eu-2024/medical-material/med-material/amp-eu-2024-poster-zhang-evolution-of-a-a-comprehend-pdf.html?utm_来源= brochure_pdf&utm_medium = qrcode&utm_campaign = avenio_cgp_v2&utm_id = dia-00288-24-p0090&utm_content = product_info 3。 Foundation®CDX技术标签,2023。 可在以下网址提供:https://info.foundationmedicine.com/hubfs/ fmi%20labels/foundationone_cdx_label_technical_info.pdf(2024年7月访问)。 4。 Foundation® -liquid技术规格,2023。 可在:https://assets.ctfassets.net/w98cd481qyp0/wvem7vticyr0st5c1vbu7/fd055e0476183a6acd4aacd4ae6b583e3aa00/f1lcdx_技术_sspecs_s_072024.pddfdffbu7/fd05e0476183a6aacd4ae6b583ae.p.p.ptd.24.pdfdffbu7/wvem7vticyr0st5c1vbu7/ 5。 Foundation® -Heme技术规格,2021。 可在:https://assets.ctfassets.net/w98cd481qyp0/42r1cte8vr4137cahrsaen/baf91080cb3d78a52adad.adad.adaada10c6358fa130/foundation foundation _ heme_heme_technical_specect.ptf(Quptiaciations.pdf)(pdf)( 6。 JE等。 血。 2016; 127:3004–3014。 7。 Clark Ta等。 J MOL诊断。 2018; 20:686–702。 8。 Chalmers Zr等。 基因组医学。 2017; 9:34。 9。 Schrock AB等。 Clin Cancer Res。 2016; 22:3281–3285。 10。 Ross JS等。 Gynecol Oncol。 2013; 130:554–559。 11。 Hall MJ等。 J Clin Oncol。2013; 31:1023–1031。2。suh JH等人。肿瘤学家。2016; 21:684–691。 https://medally.roche.com/global/en/oncology/amp-eu-2024/medical-material/med-material/amp-eu-2024-poster-zhang-evolution-of-a-a-comprehend-pdf.html?utm_来源= brochure_pdf&utm_medium = qrcode&utm_campaign = avenio_cgp_v2&utm_id = dia-00288-24-p0090&utm_content = product_info 3。 Foundation®CDX技术标签,2023。 可在以下网址提供:https://info.foundationmedicine.com/hubfs/ fmi%20labels/foundationone_cdx_label_technical_info.pdf(2024年7月访问)。 4。 Foundation® -liquid技术规格,2023。 可在:https://assets.ctfassets.net/w98cd481qyp0/wvem7vticyr0st5c1vbu7/fd055e0476183a6acd4aacd4ae6b583e3aa00/f1lcdx_技术_sspecs_s_072024.pddfdffbu7/fd05e0476183a6aacd4ae6b583ae.p.p.ptd.24.pdfdffbu7/wvem7vticyr0st5c1vbu7/ 5。 Foundation® -Heme技术规格,2021。 可在:https://assets.ctfassets.net/w98cd481qyp0/42r1cte8vr4137cahrsaen/baf91080cb3d78a52adad.adad.adaada10c6358fa130/foundation foundation _ heme_heme_technical_specect.ptf(Quptiaciations.pdf)(pdf)( 6。 JE等。 血。 2016; 127:3004–3014。 7。 Clark Ta等。 J MOL诊断。 2018; 20:686–702。 8。 Chalmers Zr等。 基因组医学。 2017; 9:34。 9。 Schrock AB等。 Clin Cancer Res。 2016; 22:3281–3285。 10。 Ross JS等。 Gynecol Oncol。 2013; 130:554–559。 11。 Hall MJ等。 J Clin Oncol。2016; 21:684–691。https://medally.roche.com/global/en/oncology/amp-eu-2024/medical-material/med-material/amp-eu-2024-poster-zhang-evolution-of-a-a-comprehend-pdf.html?utm_来源= brochure_pdf&utm_medium = qrcode&utm_campaign = avenio_cgp_v2&utm_id = dia-00288-24-p0090&utm_content = product_info 3。Foundation®CDX技术标签,2023。可在以下网址提供:https://info.foundationmedicine.com/hubfs/ fmi%20labels/foundationone_cdx_label_technical_info.pdf(2024年7月访问)。4。Foundation® -liquid技术规格,2023。可在:https://assets.ctfassets.net/w98cd481qyp0/wvem7vticyr0st5c1vbu7/fd055e0476183a6acd4aacd4ae6b583e3aa00/f1lcdx_技术_sspecs_s_072024.pddfdffbu7/fd05e0476183a6aacd4ae6b583ae.p.p.ptd.24.pdfdffbu7/wvem7vticyr0st5c1vbu7/5。Foundation® -Heme技术规格,2021。可在:https://assets.ctfassets.net/w98cd481qyp0/42r1cte8vr4137cahrsaen/baf91080cb3d78a52adad.adad.adaada10c6358fa130/foundation foundation _ heme_heme_technical_specect.ptf(Quptiaciations.pdf)(pdf)(6。JE等。 血。 2016; 127:3004–3014。 7。 Clark Ta等。 J MOL诊断。 2018; 20:686–702。 8。 Chalmers Zr等。 基因组医学。 2017; 9:34。 9。 Schrock AB等。 Clin Cancer Res。 2016; 22:3281–3285。 10。 Ross JS等。 Gynecol Oncol。 2013; 130:554–559。 11。 Hall MJ等。 J Clin Oncol。JE等。血。2016; 127:3004–3014。 7。 Clark Ta等。 J MOL诊断。 2018; 20:686–702。 8。 Chalmers Zr等。 基因组医学。 2017; 9:34。 9。 Schrock AB等。 Clin Cancer Res。 2016; 22:3281–3285。 10。 Ross JS等。 Gynecol Oncol。 2013; 130:554–559。 11。 Hall MJ等。 J Clin Oncol。2016; 127:3004–3014。7。Clark Ta等。J MOL诊断。 2018; 20:686–702。 8。 Chalmers Zr等。 基因组医学。 2017; 9:34。 9。 Schrock AB等。 Clin Cancer Res。 2016; 22:3281–3285。 10。 Ross JS等。 Gynecol Oncol。 2013; 130:554–559。 11。 Hall MJ等。 J Clin Oncol。J MOL诊断。2018; 20:686–702。 8。 Chalmers Zr等。 基因组医学。 2017; 9:34。 9。 Schrock AB等。 Clin Cancer Res。 2016; 22:3281–3285。 10。 Ross JS等。 Gynecol Oncol。 2013; 130:554–559。 11。 Hall MJ等。 J Clin Oncol。2018; 20:686–702。8。Chalmers Zr等。基因组医学。2017; 9:34。 9。 Schrock AB等。 Clin Cancer Res。 2016; 22:3281–3285。 10。 Ross JS等。 Gynecol Oncol。 2013; 130:554–559。 11。 Hall MJ等。 J Clin Oncol。2017; 9:34。9。Schrock AB等。Clin Cancer Res。 2016; 22:3281–3285。 10。 Ross JS等。 Gynecol Oncol。 2013; 130:554–559。 11。 Hall MJ等。 J Clin Oncol。Clin Cancer Res。2016; 22:3281–3285。 10。 Ross JS等。 Gynecol Oncol。 2013; 130:554–559。 11。 Hall MJ等。 J Clin Oncol。2016; 22:3281–3285。10。Ross JS等。Gynecol Oncol。2013; 130:554–559。 11。 Hall MJ等。 J Clin Oncol。2013; 130:554–559。11。Hall MJ等。 J Clin Oncol。Hall MJ等。J Clin Oncol。2016; 34:1523–1523。 12。 Roche上文件的数据。2016; 34:1523–1523。12。Roche上文件的数据。
ATU 临时使用授权(法国) BfArM 德国联邦药物和医疗产品研究所(德国) BiTE 双特异性 T 细胞接合剂 BRCA1 1 型乳腺癌易感性基因 BRCA2 2 型乳腺癌易感性基因 CAR-T 嵌合抗原受体 T 细胞 CDDF 抗癌药物开发论坛 CDF 抗癌药物基金 CDx 伴随诊断 CEPS 法国医疗保健产品经济委员会 CHMP 人用药品委员会 CMA 有条件上市许可 CML 慢性粒细胞白血病 CPD 持续专业发展 DGHO 德国血液学和临床肿瘤学会 DRG 诊断相关组 DRUP 药物重新发现协议 EAMS 早期获取药物计划 EAPM 欧洲个性化医疗联盟 EBM 德国统一评估标准 ECPC 欧洲癌症患者联盟ECPDC 欧洲癌症患者数字中心 EFPIA 欧洲制药工业协会联合会 EGFR 表皮生长因子受体 EMA 欧洲药品管理局 EOP EFPIA 肿瘤平台 ER 雌激素受体 ESMO 欧洲临床肿瘤学会 FDA 美国食品药品管理局 G-BA 联邦联合委员会(德国联邦肿瘤管理局) GDP 国内生产总值 GDPR 欧洲通用数据保护条例 GMS 瑞典基因组医学 HAS 法国国家卫生局(Haute Autorité de Santé) HER2 人类表皮生长因子受体 HTA 卫生技术评估 IASLC 国际肺癌研究协会
最初的PMA(P170019)用于基础CDX于2017年11月30日批准,用于检测可能受益于非小细胞肺癌(NSCLC),黑色素瘤,乳腺癌,结婚癌症(CRC)和Ovarian Cancer的15种FDA批准疗法之一。随后,批准了九种PMA补充剂以扩大F1CDX的适应症,因为它是其最初批准的。PMA补充(P170019/S005)用于添加杂合性基因组损失(LOH)的PMA补充剂(P170019/S004)在2019年7月1日批准了BRCA1/2改变的卵巢癌患者中添加Lynparza®(Olaparib)指示的指示。PMA补充(P170019/S008)在NSCLC患者中添加Tagrisso®(Osimertinib)的指示EGFR EXON 19缺失和EGFR EXON 21 L858R变化的指示,于2019年7月1日获得批准。PMA补充剂(P170019/S006)在2019年12月3日批准了PIKRAY®(Alpelisib)对PIK3CA改变的乳腺癌患者的指示(Alpelisib)的指示。PMA补充(P170019/S010)在北卡罗来纳州莫里斯维尔添加第二个网站,该网站将于2019年12月16日批准。PMA补充(P170019/S013),用于在2020年4月17日批准使用FGFR2融合的胆管癌患者中添加Pemzyre®(Pemigatinib)的指示(pemigatinib)。PMA补充(P170019/S011)在NSCLC患者中添加了MET单核苷酸变体(SNV)和导致MET 14跳过的NSCLC患者中添加TabRecta®(Capmatinib)的指示。
在OVO研究中,进行了一项关于核苷(25、50和100 mg/egg)对孵化力,生长性能,能量可分配性和肠形态的核苷作用的影响的研究。将四百八十(480)个肥卵分为四组(四个重复分别有30个卵)。在鸡蛋孵化的第18天,进行蜡烛,并选择了肥沃的鸡蛋,并给出了OVO管理中的四个。第一组用作对照,并注入了磷酸盐缓冲盐水(PBS)。其他组在100 µL的OVO给药(25、50和100 mg/eg)的OVO给药中通过蛋黄囊途径给出,并孵化了各个组的小鸡。在实验组中,孵化力是可比的。然而,在以100 mg/eg的形式注射较高水平的核苷的组中,孵化力受到影响。从更高剂量的核苷(50和100 mg)中孵化的小鸡的体重(BW)高(p <0.05)。在注入核苷的组中观察到较高的能量代谢性(%)。血浆蛋白浓度较高,用于核苷(50和100 mg)的组中。在组织学上,肠绒毛长度在100 mg注射组中最大,然后是50 mg和25 mg。在3、7和14天大的所有注射组中,在空肠中同型(CDX)的相对表达显着(P <0.05)。核苷辅助组具有更好的性能,能量代谢性和肠形态。在实验组中,以50 mg/卵的核苷施用导致肉鸡较高的生长性能,血浆蛋白,肠表面和绒毛发育。
ACE 护理效能机构 APAC 亚太地区 APCM 先进精准癌症医学 C-CAT 癌症基因组学和先进治疗中心 cDx 伴随诊断 CGP 综合基因组分析 CGT 临床遗传/基因组检测 CRC 结直肠癌 DALY 伤残调整生命年 DRUP 药物重新发现协议 EMR 电子病历 EU 欧洲 ESMO 欧洲肿瘤医学协会 FDA 食品药品管理局 GDP 国内生产总值 GEP 基因组学教育计划 GMC 基因组医学中心 GMS 基因组医学服务 HCP 医疗专业人士 HIRA 健康保险审查和评估服务 HTA 卫生技术评估 IVD 体外诊断 KPI 关键绩效指数 KPMNG 韩国精准医学网络小组 LDT 实验室开发测试 LIS 实验室信息系统 MIR 死亡率与发病率比 MFDS 食品药品安全部 MHLW 厚生劳动省 MSAC 医疗服务咨询委员会 MTB 分子肿瘤委员会 NCCP 国家癌症控制计划 NECA 国家循证医学医疗保健合作机构 NGP 国家基因组平台 NGS 下一代测序 NHS 国家医疗服务体系 NICE 国家健康与临床优化研究所 NSCLC 非小细胞肺癌 OS 总生存期 PAG 患者权益组织 PFS 无进展生存期 PMI 精准医疗计划 PPM 个性化和精准医疗 QALY 质量调整生命年 QoL 生活质量 RWE 真实世界证据 SGT 单基因检测 TMB 肿瘤突变负担 UK 英国 VAF 价值评估框架 WGS 全基因组测序
未知的原发性(杯子)的癌症包括一组异质的罕见转移性肿瘤,其主要部位在广泛的临床 - 病情研究后无法识别。 杯子患者通常接受经验化学疗法治疗,并且预后较低。 最近报道,杯赛基因组提出了可能提出靶向疗法的潜在可药物改变。 肿瘤组织的稀少以及难于DNA测试以及缺乏用于靶基因测序的专用面板是进一步的相关局限性。 在这里,我们建议可以使用循环肿瘤细胞(CTC)和循环肿瘤DNA(CTDNA)来识别杯赛患者中可起作用的突变。 血液是从两名杯子患者手中纵向收集的。 用细胞搜索r⃝和deparray tm nxt和parsortix系统分离 ctc,具有免疫表征的特征,用于使用Ampli 1 TM试剂盒进行单细胞基因组表征。 在不同时间点从血浆中纯化的循环无细胞DNA(CCFDNA),使用Sureselect目标富集技术测试了使用杯折线的92基因定制面板的肿瘤突变。 并行,用三种不同的测定法分析了FFPE肿瘤组织:FoundationOne CDX测定法,DeParray libprep和Oncoseek面板以及Sureselect自定义面板。 这些方法识别出相同的突变,当该基因被面板覆盖时,除了APC基因中的插入外。 由Oncoseek和SuneSelect面板检测到,但没有基础。 在一名患者的单个CTC,肿瘤组织和CCFDNA中检测到 FGFR2和CCNE1基因扩增。未知的原发性(杯子)的癌症包括一组异质的罕见转移性肿瘤,其主要部位在广泛的临床 - 病情研究后无法识别。杯子患者通常接受经验化学疗法治疗,并且预后较低。最近报道,杯赛基因组提出了可能提出靶向疗法的潜在可药物改变。肿瘤组织的稀少以及难于DNA测试以及缺乏用于靶基因测序的专用面板是进一步的相关局限性。在这里,我们建议可以使用循环肿瘤细胞(CTC)和循环肿瘤DNA(CTDNA)来识别杯赛患者中可起作用的突变。血液是从两名杯子患者手中纵向收集的。ctc,具有免疫表征的特征,用于使用Ampli 1 TM试剂盒进行单细胞基因组表征。在不同时间点从血浆中纯化的循环无细胞DNA(CCFDNA),使用Sureselect目标富集技术测试了使用杯折线的92基因定制面板的肿瘤突变。并行,用三种不同的测定法分析了FFPE肿瘤组织:FoundationOne CDX测定法,DeParray libprep和Oncoseek面板以及Sureselect自定义面板。这些方法识别出相同的突变,当该基因被面板覆盖时,除了APC基因中的插入外。由Oncoseek和SuneSelect面板检测到,但没有基础。在一名患者的单个CTC,肿瘤组织和CCFDNA中检测到 FGFR2和CCNE1基因扩增。在肿瘤组织和CCFDNA中检测到ARID1A基因(P.R1276 ∗)中的体细胞变体。通过在肿瘤演化期间收集的所有CCFDNA样品中,通过液滴数字PCR验证了变化。CTC呈现出ASPM和SEPT9基因中的复发放大模式以及FANCC的丧失。识别CCFDNA中的92基因自定义面板16个非同义体细胞改变,包括删除(I1485rfs ∗ 19)和体细胞突变(p。