增强子易位,由于3q26重排,在急性髓样白血病(AML)的侵略性亚型中驱动了脱皮的MECOM表达。使用内源性生长素诱导的脱基龙直接耗尽MECOM,立即上调髓样分化因子CEBPA的表达。MECOM耗竭也伴随着干细胞的严重丧失和分化的增加。mecom通过与 +42KB CEBPA增强子结合而产生抑制作用,这是中性粒细胞发育必不可少的基因。这部分取决于MECOM及其共抑制器CTBP2之间的相互作用。我们证明CEBPA过表达可以绕过MECOM介导的分化块。此外,通过增强劫持的AML MECOM过表达的AML患者显着降低了CEBPA。我们的研究直接连接了两个主要参与者Meeloid Transformation Mecom和Cebpa,它提供了对MECOM通过灭活Cebpa将干细胞状态保持在AML独特亚型的机制的洞察力。
1美国波士顿儿童医院血液学/肿瘤学的分工,美国马萨诸塞州波士顿,美国马萨诸塞州02115。2美国马萨诸塞州波士顿的哈佛医学院Dana-Farber癌症研究所儿科肿瘤学系,美国马萨诸塞州02115。 3美国马萨诸塞州波士顿霍华德·休斯医学院,美国02115。 4美国麻省理工学院和哈佛大学的广泛研究所,美国马萨诸塞州02142,美国。 5美国马萨诸塞州波士顿哈佛医学院细胞生物学系02115,美国。 6,美国马萨诸塞州波士顿,哈佛医学院生物化学和分子药理学系,美国02115,美国。 7血管生物学计划,波士顿儿童医院,波士顿,马萨诸塞州02115,美国。 8美国马萨诸塞州波士顿的波士顿儿童医院手术系,美国马萨诸塞州02115。 9加拿大多伦多大学健康网络玛格丽特癌症中心公主。 10号医学生物物理学系,加拿大多伦多多伦多大学。 11哈佛干细胞研究所,剑桥,马萨诸塞州02142,美国。 12现在的地址:美国德克萨斯州达拉斯西南医疗中心,美国德克萨斯州75390。 13这些作者为这项工作做出了同样的贡献。 14铅接触。 *通信:sankaran@broadinstitute.org,tfleming@broadinstitute.org,richard.voit@utsouthwestern.edu急性髓性白血病(AML)的预后不佳,许多高风险的病例病例调节性调节性程序仍然很糟糕,但仍然可以理解这一机构,这是该机构的范围。 增加了干细胞转录因子MECOM的表达,这是一个主要无法治愈的AML中的一个关键驱动器机制。 MECOM如何导致这种侵略性的AML表型仍然未知。2美国马萨诸塞州波士顿的哈佛医学院Dana-Farber癌症研究所儿科肿瘤学系,美国马萨诸塞州02115。3美国马萨诸塞州波士顿霍华德·休斯医学院,美国02115。4美国麻省理工学院和哈佛大学的广泛研究所,美国马萨诸塞州02142,美国。 5美国马萨诸塞州波士顿哈佛医学院细胞生物学系02115,美国。 6,美国马萨诸塞州波士顿,哈佛医学院生物化学和分子药理学系,美国02115,美国。 7血管生物学计划,波士顿儿童医院,波士顿,马萨诸塞州02115,美国。 8美国马萨诸塞州波士顿的波士顿儿童医院手术系,美国马萨诸塞州02115。 9加拿大多伦多大学健康网络玛格丽特癌症中心公主。 10号医学生物物理学系,加拿大多伦多多伦多大学。 11哈佛干细胞研究所,剑桥,马萨诸塞州02142,美国。 12现在的地址:美国德克萨斯州达拉斯西南医疗中心,美国德克萨斯州75390。 13这些作者为这项工作做出了同样的贡献。 14铅接触。 *通信:sankaran@broadinstitute.org,tfleming@broadinstitute.org,richard.voit@utsouthwestern.edu急性髓性白血病(AML)的预后不佳,许多高风险的病例病例调节性调节性程序仍然很糟糕,但仍然可以理解这一机构,这是该机构的范围。 增加了干细胞转录因子MECOM的表达,这是一个主要无法治愈的AML中的一个关键驱动器机制。 MECOM如何导致这种侵略性的AML表型仍然未知。4美国麻省理工学院和哈佛大学的广泛研究所,美国马萨诸塞州02142,美国。5美国马萨诸塞州波士顿哈佛医学院细胞生物学系02115,美国。 6,美国马萨诸塞州波士顿,哈佛医学院生物化学和分子药理学系,美国02115,美国。 7血管生物学计划,波士顿儿童医院,波士顿,马萨诸塞州02115,美国。 8美国马萨诸塞州波士顿的波士顿儿童医院手术系,美国马萨诸塞州02115。 9加拿大多伦多大学健康网络玛格丽特癌症中心公主。 10号医学生物物理学系,加拿大多伦多多伦多大学。 11哈佛干细胞研究所,剑桥,马萨诸塞州02142,美国。 12现在的地址:美国德克萨斯州达拉斯西南医疗中心,美国德克萨斯州75390。 13这些作者为这项工作做出了同样的贡献。 14铅接触。 *通信:sankaran@broadinstitute.org,tfleming@broadinstitute.org,richard.voit@utsouthwestern.edu急性髓性白血病(AML)的预后不佳,许多高风险的病例病例调节性调节性程序仍然很糟糕,但仍然可以理解这一机构,这是该机构的范围。 增加了干细胞转录因子MECOM的表达,这是一个主要无法治愈的AML中的一个关键驱动器机制。 MECOM如何导致这种侵略性的AML表型仍然未知。5美国马萨诸塞州波士顿哈佛医学院细胞生物学系02115,美国。6,美国马萨诸塞州波士顿,哈佛医学院生物化学和分子药理学系,美国02115,美国。 7血管生物学计划,波士顿儿童医院,波士顿,马萨诸塞州02115,美国。 8美国马萨诸塞州波士顿的波士顿儿童医院手术系,美国马萨诸塞州02115。 9加拿大多伦多大学健康网络玛格丽特癌症中心公主。 10号医学生物物理学系,加拿大多伦多多伦多大学。 11哈佛干细胞研究所,剑桥,马萨诸塞州02142,美国。 12现在的地址:美国德克萨斯州达拉斯西南医疗中心,美国德克萨斯州75390。 13这些作者为这项工作做出了同样的贡献。 14铅接触。 *通信:sankaran@broadinstitute.org,tfleming@broadinstitute.org,richard.voit@utsouthwestern.edu急性髓性白血病(AML)的预后不佳,许多高风险的病例病例调节性调节性程序仍然很糟糕,但仍然可以理解这一机构,这是该机构的范围。 增加了干细胞转录因子MECOM的表达,这是一个主要无法治愈的AML中的一个关键驱动器机制。 MECOM如何导致这种侵略性的AML表型仍然未知。6,美国马萨诸塞州波士顿,哈佛医学院生物化学和分子药理学系,美国02115,美国。7血管生物学计划,波士顿儿童医院,波士顿,马萨诸塞州02115,美国。8美国马萨诸塞州波士顿的波士顿儿童医院手术系,美国马萨诸塞州02115。 9加拿大多伦多大学健康网络玛格丽特癌症中心公主。 10号医学生物物理学系,加拿大多伦多多伦多大学。 11哈佛干细胞研究所,剑桥,马萨诸塞州02142,美国。 12现在的地址:美国德克萨斯州达拉斯西南医疗中心,美国德克萨斯州75390。 13这些作者为这项工作做出了同样的贡献。 14铅接触。 *通信:sankaran@broadinstitute.org,tfleming@broadinstitute.org,richard.voit@utsouthwestern.edu急性髓性白血病(AML)的预后不佳,许多高风险的病例病例调节性调节性程序仍然很糟糕,但仍然可以理解这一机构,这是该机构的范围。 增加了干细胞转录因子MECOM的表达,这是一个主要无法治愈的AML中的一个关键驱动器机制。 MECOM如何导致这种侵略性的AML表型仍然未知。8美国马萨诸塞州波士顿的波士顿儿童医院手术系,美国马萨诸塞州02115。9加拿大多伦多大学健康网络玛格丽特癌症中心公主。10号医学生物物理学系,加拿大多伦多多伦多大学。 11哈佛干细胞研究所,剑桥,马萨诸塞州02142,美国。 12现在的地址:美国德克萨斯州达拉斯西南医疗中心,美国德克萨斯州75390。 13这些作者为这项工作做出了同样的贡献。 14铅接触。 *通信:sankaran@broadinstitute.org,tfleming@broadinstitute.org,richard.voit@utsouthwestern.edu急性髓性白血病(AML)的预后不佳,许多高风险的病例病例调节性调节性程序仍然很糟糕,但仍然可以理解这一机构,这是该机构的范围。 增加了干细胞转录因子MECOM的表达,这是一个主要无法治愈的AML中的一个关键驱动器机制。 MECOM如何导致这种侵略性的AML表型仍然未知。10号医学生物物理学系,加拿大多伦多多伦多大学。11哈佛干细胞研究所,剑桥,马萨诸塞州02142,美国。12现在的地址:美国德克萨斯州达拉斯西南医疗中心,美国德克萨斯州75390。13这些作者为这项工作做出了同样的贡献。14铅接触。*通信:sankaran@broadinstitute.org,tfleming@broadinstitute.org,richard.voit@utsouthwestern.edu急性髓性白血病(AML)的预后不佳,许多高风险的病例病例调节性调节性程序仍然很糟糕,但仍然可以理解这一机构,这是该机构的范围。增加了干细胞转录因子MECOM的表达,这是一个主要无法治愈的AML中的一个关键驱动器机制。MECOM如何导致这种侵略性的AML表型仍然未知。为了解决现有的实验局限性,我们通过功能性基因组读数进行了靶向蛋白质降解,以证明MECOM通过直接抑制促分化的基因调节程序来促进恶性干细胞状状态。非常出乎意料的是,该网络中的一个节点是髓样分化调节剂CEBPA的42 KB的MECOM结合的顺式调节元件,对于维持MECOM驱动的白血病是必要且足够的。重要的是,该调节元件的有针对性激活促进了这些积极的AML的分化,并减轻了体内的白血病负担,这表明一种广泛适用的基于分化的方法来改善治疗。
急性髓样白血病的变体描述/背景急性髓样白血病(AML)AML是一组多样的血液学恶性肿瘤,其特征是骨髓,血液和/或其他组织中髓样爆炸的克隆膨胀。它是成人中最常见的白血病类型,通常与预后不良有关。美国癌症学会估计将在2023年在美国有20,380例新AML病例和11,310例AML死亡。1,AML的诊断和预后,最新的世界卫生组织分类(2022)反映了可以根据基础的细胞遗传学异常(即,在染色体的水平上)进行分类的急性白血病的数量增加,包括染色体水平,包括染色体的属性或分子的属性,即属于属性的属性(即属性属性)。变体)和通过分化而没有定义遗传异常的差异。这些细胞遗传学和分子变化形成了具有诊断,预后和治疗意义的不同临床病理遗传学实体。2常规的细胞遗传学分析(核分型)被认为是对怀疑急性白血病患者诊断评估的强制性组成部分,因为肿瘤的细胞遗传学特征被认为是AML预后最有力的预测指标,并且用于指导当前的现有风险治疗策略。分子变体已被分析为细胞遗传学的亚dibdivide AML进入预后子集。“具有NPM1突变的AML和具有CEBPA突变的AML”作为2022年World Health的类别在AML中,具有预后影响的三个最常见的分子变化是CEBPA的变体,编码转录因子,flt3基因的变体,编码与造血中有关的酪氨酸激酶的受体,以及NPM1基因的变体,编码NPM1基因的变体,编码necode necode necodein in Necodein in npm1 necode necodein in npm1 necode necodein in npm1基因的变体。