亚培养物从粘附细胞中去除旧培养基,并用缺乏钙和镁的PBS洗涤它们。对于T25烧瓶,使用3-5毫升PBS,对于T75烧瓶,使用5-10毫升。然后,使用1-2 mL对T25烧瓶完全覆盖细胞,T75烧瓶2.5 mL。让细胞在室温下孵育8-10分钟以将其分离。孵育后,将细胞与10 ml培养基轻轻混合以重悬于它们,然后以300xg离心3分钟。丢弃上清液,将细胞重悬于新鲜培养基中,然后将其转移到已经包含新鲜培养基的新瓶中。
摘要 重力引起的意识丧失 (G-LOC) 是战斗机飞行员面临的主要威胁,可能会导致致命事故。高 +Gz(头到脚方向)加速度力会诱发脑出血,导致周边视力丧失、中央视力丧失(昏厥)和 G-LOC。我们尝试建立一个公式,使用脑氧合血红蛋白 (oxyHb) 值、身高、体重和身体质量指数 (BMI) 来预测 G-LOC。我们分析了 2008 年至 2012 年间测量的 249 名人体离心机受训者的脑氧合血红蛋白值。受训者暴露于两种离心机模式。一种是 4G–15s、5G–10s、6G–8s 和 7G–8s,不穿抗荷服(间隔 60 秒,发作率为 1G/s)。另一组为 8G-15s,起始速率为 6G/s,穿着抗荷服。我们使用近红外光谱仪 (NIRS)(NIRO-150G,日本静冈县滨松光子学株式会社,滨松)测量了受训者的脑氧合血红蛋白值。分析了以下参数。A)基线值为 +Gz 暴露前 30 秒的平均值。B)+Gz 暴露期间氧合血红蛋白的最大值。C)+Gz 暴露期间氧合血红蛋白的最小值。D)氧合血红蛋白从最大值到最小值的变化率(变化率)。使用逻辑回归分析进行统计分析,以建立预测 G-LOC 的公式。受训者的年龄为 24.1 ±1.7(S.D.)(范围,22 ~ 30)
公共设施中心 (CFC) 于 1984 年在 USIC 下成立,拥有五种仪器,包括 AAS、XRD、超离心机、紫外可见光、色散红外。其目的是为大学、大学附属学院的研究人员和学术人员、研究机构和附近的行业提供分析仪器设施。虽然最初只有五台设备,但现在公共设施中心共有十四台先进的精密分析仪器。许多资助机构(如 SAIF-DST、DST-PURSE、RUSA、UGC 等)为其提供资金支持,使其成为最先进的设施,因此中心更名为 CFC-SAIF-DST 中心。
公共设施中心 (CFC) 于 1984 年在 USIC 下成立,拥有五种仪器,例如 AAS、XRD、超离心机、紫外可见光、色散红外。其目的是为大学、大学附属学院的研究人员和学术人员、研究机构和附近的行业提供分析仪器设施。虽然最初只有五台设备,但现在公共设施中心共有十四台先进的尖端分析仪器,它们都位于一个独立的专用建筑内。许多资助机构都提供了资金支持,以采购先进的分析仪器,例如 SAIF-DST、DST-PURSE、RUSA、UGC 等。
亚培养物从粘附细胞中去除旧培养基,并用缺乏钙和镁的PBS洗涤它们。对于T25烧瓶,使用3-5毫升PBS,对于T75烧瓶,使用5-10毫升。然后,使用1-2 mL对T25烧瓶完全覆盖细胞,T75烧瓶2.5 mL。让细胞在室温下孵育8-10分钟以将其分离。孵育后,将细胞与10 ml培养基轻轻混合以重悬于它们,然后以300xg离心3分钟。丢弃上清液,将细胞重悬于新鲜培养基中,然后将其转移到已经包含新鲜培养基的新瓶中。
亚培养物从粘附细胞中去除旧培养基,并用缺乏钙和镁的PBS洗涤它们。对于T25烧瓶,使用3-5毫升PBS,对于T75烧瓶,使用5-10毫升。然后,使用1-2 mL对T25烧瓶完全覆盖细胞,T75烧瓶2.5 mL。让细胞在室温下孵育8-10分钟以将其分离。孵育后,将细胞与10 ml培养基轻轻混合以重悬于它们,然后以300xg离心3分钟。丢弃上清液,将细胞重悬于新鲜培养基中,然后将其转移到已经包含新鲜培养基的新瓶中。
- 0.5 mL的麻醉剂是从一个麻醉剂样本中抽出的,并将0.2 µm的过滤器推入单独的管中,从而导致0.25 mL过滤的麻醉液 - 将0.75 mL的MQ水添加到过滤后的麻醉管中,从而导致1:3比例的1:3比例。- 在13.4 rpm的情况下,将过滤后的麻醉管放置在离心机中15分钟。- 将离心麻醉的10 µl移动到乙醇清洁的玻璃显微镜载玻片上 - 将显微镜载玻片放在70°C的热板上,将一根空气管放在一个热板上,吹过一管,穿过18 g的针头,位于样品
1。将多达200毫克的凳子样品添加到珠管中,然后将管子放在冰上。-Note:如果样品干燥,则将样本量降低至≤50mg。 - 注意:如果样品是液体,则将200 µL样品添加到珠管中。2。将300 µL的SDE1缓冲液和20 µL蛋白酶K加入样品。以最大速度涡旋5分钟。在孵育过程中将样品混合物在60°C下孵育20分钟,每5分钟涡流一次。- 确保粪便样品完全匀浆。- 为了从革兰氏阳性细菌中分离DNA,需要在蛋白酶K裂解后在95°C下额外孵育5分钟。3。简要旋转管以去除盖子内部的滴。4。冷却样品混合物,并加入100 µL SDE2缓冲液。通过涡旋充分混合并在冰上孵育样品混合物5分钟。5。全速离心5分钟。6。小心地将上清液转移到1.5 mL微输出管(未提供)并丢弃凳子颗粒。- 避免移除任何碎屑和颗粒。7。加入200 µL的SDE3缓冲液。通过涡旋充分混合并在室温下孵育样品混合物2分钟。- 注:SDE3缓冲液必须在每次使用前都会急剧涡旋。- 切断1 ml尖端的末端,以使移动SDE3缓冲区更容易。8。全速离心2分钟。9。小心地将250 µL上清液转移到1.5 mL微输出管(未提供)。- 避免移除任何碎屑和颗粒。
摘要来自肝脏疾病,非酒精性脂肪性肝炎(NASH)是一种影响世界上5.3%的人的疾病。NASH患者的肝脏患有炎症,这也称为纤维化,可以是慢性的,并导致肝硬化的发展。为治疗纤维化患者,正在进行研究以开发抗纤维化疗法以抑制纤维化。在这些研究中,重点是开发自身蛋白酶抑制剂以减少纤维化。酶自身蛋白酶在LPA的产生中起重要作用,LPA是细胞外信号分子。lpa可以作为细胞外分子与LPA 1-3受体结合,而LPA 4-6受体则在ATX的指导下优选地通过LPA激活。由于LPA受体参与纤维化,因此希望使用人类肝星状细胞(HSCS)细胞系LX-2研究这些受体在肝纤维化中的差异,并用LPA受体敲除。要创建此基因敲除细胞系,需要使用CRISPR/CAS9转染LX-2细胞进行优化的核反理®方案。在这里,基于转染效率和细胞活力,将核对甲基®程序EW-113和CA-137进行比较。需要用于核对®实验150.000个细胞。为了在离心后获得最小的细胞损失,研究了不同的离心程序(90xg 10分钟,240xg,持续3分钟,300xg持续5分钟)。从实验的结果中,离心程序之间的离心损失最小的离心机损失没有显着差异。从转染效率和细胞活力的结果中,该程序CA-137是最合适的程序,具有最高的细胞活力,并结合了具有CRISPR/CAS9的LX-2细胞的足够高的转染效率。