“遗传生物多样性”损失可以以物种灭绝的速度为特征,阈值不超过每年百万灭绝的10种(E/MSY)(Rockström等,2009)。评估“功能完整性”的指标,称为生物圈完整指数(BII),评估了人口丰度和丰富度的变化,将它们与工业前水平进行了比较。BII不应低于90%以下(Steffen等,2015)。Richardson等。 (2023)从现在开始修订了功能完整性变量,从现在衡量为人类的净初级生产力(HANPP),即 生态系统可用的能量。 边界设置为全新世NPP的10%。Richardson等。(2023)从现在开始修订了功能完整性变量,从现在衡量为人类的净初级生产力(HANPP),即生态系统可用的能量。边界设置为全新世NPP的10%。
发电机类型 全碳 混合 全电动 电力份额 % 0 30 100 总额定功率 kW 8,720 8,720 8,720 燃气燃烧器额定功率 kW 8,720 6,100 0 电气元件额定功率 kW 0 2,620 8,720 环境空气流速 kg/h 63,300 63,300 63,300 运行温度 °C 550 550 550 喷雾干燥粉末产量 (*) kg/h 21,200 21,200 21,200 总用电量 kW 7,850 7,850 7,850 热负荷系数 % 90 90 90 燃气燃烧器用电量 kW 7,850 5,230 0 CO 2 排放量 (**) t/年11,460 7,630 0 (*)泥浆含水量为 34%,粉末输出含水量为 6% (**)每年运行时间为 7,000 小时
美国国家科学基金会将向9个材料研究科学与工程中心投资1.62亿美元,将科学突破转化为造福美国经济多个领域的红利。这9个中心分别是伊利诺伊大学香槟分校的伊利诺伊州材料研究科学与工程中心、德克萨斯大学材料动力学与控制中心、华盛顿大学分子工程材料中心、西北大学材料研究科学与工程中心、宾夕法尼亚大学物质结构研究实验室、加州大学圣巴巴拉分校材料研究实验室、威斯康星大学威斯康星材料研究科学与工程中心、田纳西大学先进材料与制造中心和密歇根大学材料创新中心。每个中心将在6年内获得1800万美元的资助。
* 杜克大学法学院法学副教授。我非常感谢过去几年来与许多人的深入交流和反馈,包括 Matthew Adler、Kerry Abrams、Rohit Asirvatham、Rachel Barkow、Sara Sun Beale、Monica Bell、Jeffrey Bel- lin、Joseph Blocher、James Boyle、Sam Buell、Robynn Cox、Miltonette Craig、Michael Frakes、Brandon Garrett、Lia Gelles、Max Gelles、Jim Greiner、Lisa Griffin、Eisha Jain、Anna Kaplan、Charlotte Kaplan、Emma Kaufman、Maggie Lemos、Kate Levine、Asher Levinthal、Tracey Meares、Ion Meyn、Ngozi Okidegbe、JJ Prescott、Michael Pollack、Roshan Rama、John Rappaport、Jocelyn Simonson、Sam Speers、Megan Stevenson、Chris Slobogin、Jenia Turner、Ronald Wright 和 Diego Zambrano。我还要感谢明尼苏达大学法学院公法研讨会、哈佛大学法学院刑事司法改革阅读小组、实证刑法圆桌会议、ABA-AALS-司法学院刑事司法圆桌会议、杜克大学法学院教职员工研讨会、2020 年法律与社会会议和 CrimConn 2020 的反馈。
1。J。Ren,Y。Huang,H。Zhu,B。Zhang,H。Zhu,S。Shen,S。Shen,G。Tan,F。Wu,H。He,H。He,S。Lan,S。Lan,X。Xia和Q. Liu,“用于能源存储的MOF碳材料的最新进展”,《碳含量》,碳能量,2 [2] 176-202(20202020)。2。S.-W。 Choi,“在室温下运行的半导体基于碳纳米材料的气体传感器的传感性能”,《陶瓷》,22 [1] 96-106(2019)。3。J。kim,“高热电导率纳米材料的测量技术(韩语)”,《陶瓷》,24 [1] 109-119(2021)。4。R。Taylor和D. R. M. Walton,“富勒烯的化学”,《自然》,363 [24] 685-693(1993)。5。S.-H。 Lee,J。H. Park和S. Min。Kim,“碳纳米管纤维的合成,特性和应用”,J。Kor。 Ceram。,Soc。,58 148-159(2021)。 6。 R。 您,Y.-Q. 刘,Y.-L。 Hao,D.-D。韩,Y.-L。 Zhang和Z. 您,“基于石墨烯的柔性电子产品的激光制造”,Adv。 mater。,32 [15] 1901981Kim,“碳纳米管纤维的合成,特性和应用”,J。Kor。Ceram。,Soc。,58 148-159(2021)。6。R。您,Y.-Q. 刘,Y.-L。 Hao,D.-D。韩,Y.-L。 Zhang和Z. 您,“基于石墨烯的柔性电子产品的激光制造”,Adv。 mater。,32 [15] 1901981您,Y.-Q.刘,Y.-L。 Hao,D.-D。韩,Y.-L。 Zhang和Z. 您,“基于石墨烯的柔性电子产品的激光制造”,Adv。 mater。,32 [15] 1901981刘,Y.-L。 Hao,D.-D。韩,Y.-L。 Zhang和Z.您,“基于石墨烯的柔性电子产品的激光制造”,Adv。mater。,32 [15] 1901981
纳米复合材料作为Na-ion电池的新型阴极” Nano Energy,77 105175(2020)。4。R。A. Shakoor,D。H。Seo,H。Kim,Y。U。 Park,J。Kim,S。W. Kim,H。Gwon,S。Lee和K. mater。 化学。 ,22(38):20535-20541(2012)。 5。 J。 Kim,H。Kim和S. Lee,“高功率阴极材料NA 4 VO(PO 4)2,带有用于NA离子电池的开放框架”。 mater。 ,29(8):3363-3366(2017)。 6。 J。 Kim,I。 Park,H。Kim,K.-Y. Park,Y.-U。 Park和K. Kang,“为Na-ion电池量身定制新的4V级阴极材料”。 能量母校。 ,6(6):1502147(2016)。 7。 J。 H。Jo,J。U. Choi,M。K. Cho,Y。Aniskevich,H。Kim,G。Ragoisha,E。Streltsov,J。Kim和S. Myung,“ Hollandite-type type vo 1.75(OH)0.5:有效的钠存储空间,可用于高性能的钠含量储量储量储备金”。 能量母校。 ,9(22):1900603(2019)。 8。 M。 K. Cho,J。H. Jo,J。U. Choi,J。Kim,H。Yashiro,S。Yuan,L。Shi,L。Shi,Y。K. Sun和S. T. Myung,“隧道 - 型β-feooh阴极材料,用于通过新的转换反应的高速钠存储材料” Nano Enervy” Nano Enervy”,Nano Energy,41 687-696(2017)。 9。 W。 Ko,T。Park,H。Park,Y。Lee,K。E. Lee和J. Kim,“ NA 0.97 KFE(SO 4)2:一种基于铁的硫酸盐阴极材料,具有NA-AIN电池的出色环境和功率能力” J。 mater。A. Shakoor,D。H。Seo,H。Kim,Y。U。Park,J。Kim,S。W. Kim,H。Gwon,S。Lee和K.mater。化学。,22(38):20535-20541(2012)。5。J。Kim,H。Kim和S. Lee,“高功率阴极材料NA 4 VO(PO 4)2,带有用于NA离子电池的开放框架”。mater。,29(8):3363-3366(2017)。6。J。Kim,I。 Park,H。Kim,K.-Y. Park,Y.-U。 Park和K. Kang,“为Na-ion电池量身定制新的4V级阴极材料”。 能量母校。 ,6(6):1502147(2016)。 7。 J。 H。Jo,J。U. Choi,M。K. Cho,Y。Aniskevich,H。Kim,G。Ragoisha,E。Streltsov,J。Kim和S. Myung,“ Hollandite-type type vo 1.75(OH)0.5:有效的钠存储空间,可用于高性能的钠含量储量储量储备金”。 能量母校。 ,9(22):1900603(2019)。 8。 M。 K. Cho,J。H. Jo,J。U. Choi,J。Kim,H。Yashiro,S。Yuan,L。Shi,L。Shi,Y。K. Sun和S. T. Myung,“隧道 - 型β-feooh阴极材料,用于通过新的转换反应的高速钠存储材料” Nano Enervy” Nano Enervy”,Nano Energy,41 687-696(2017)。 9。 W。 Ko,T。Park,H。Park,Y。Lee,K。E. Lee和J. Kim,“ NA 0.97 KFE(SO 4)2:一种基于铁的硫酸盐阴极材料,具有NA-AIN电池的出色环境和功率能力” J。 mater。Kim,I。Park,H。Kim,K.-Y. Park,Y.-U。 Park和K. Kang,“为Na-ion电池量身定制新的4V级阴极材料”。 能量母校。 ,6(6):1502147(2016)。 7。 J。 H。Jo,J。U. Choi,M。K. Cho,Y。Aniskevich,H。Kim,G。Ragoisha,E。Streltsov,J。Kim和S. Myung,“ Hollandite-type type vo 1.75(OH)0.5:有效的钠存储空间,可用于高性能的钠含量储量储量储备金”。 能量母校。 ,9(22):1900603(2019)。 8。 M。 K. Cho,J。H. Jo,J。U. Choi,J。Kim,H。Yashiro,S。Yuan,L。Shi,L。Shi,Y。K. Sun和S. T. Myung,“隧道 - 型β-feooh阴极材料,用于通过新的转换反应的高速钠存储材料” Nano Enervy” Nano Enervy”,Nano Energy,41 687-696(2017)。 9。 W。 Ko,T。Park,H。Park,Y。Lee,K。E. Lee和J. Kim,“ NA 0.97 KFE(SO 4)2:一种基于铁的硫酸盐阴极材料,具有NA-AIN电池的出色环境和功率能力” J。 mater。Park,H。Kim,K.-Y.Park,Y.-U。 Park和K. Kang,“为Na-ion电池量身定制新的4V级阴极材料”。 能量母校。 ,6(6):1502147(2016)。 7。 J。 H。Jo,J。U. Choi,M。K. Cho,Y。Aniskevich,H。Kim,G。Ragoisha,E。Streltsov,J。Kim和S. Myung,“ Hollandite-type type vo 1.75(OH)0.5:有效的钠存储空间,可用于高性能的钠含量储量储量储备金”。 能量母校。 ,9(22):1900603(2019)。 8。 M。 K. Cho,J。H. Jo,J。U. Choi,J。Kim,H。Yashiro,S。Yuan,L。Shi,L。Shi,Y。K. Sun和S. T. Myung,“隧道 - 型β-feooh阴极材料,用于通过新的转换反应的高速钠存储材料” Nano Enervy” Nano Enervy”,Nano Energy,41 687-696(2017)。 9。 W。 Ko,T。Park,H。Park,Y。Lee,K。E. Lee和J. Kim,“ NA 0.97 KFE(SO 4)2:一种基于铁的硫酸盐阴极材料,具有NA-AIN电池的出色环境和功率能力” J。 mater。Park,Y.-U。Park和K. Kang,“为Na-ion电池量身定制新的4V级阴极材料”。能量母校。,6(6):1502147(2016)。7。J。H。Jo,J。U. Choi,M。K. Cho,Y。Aniskevich,H。Kim,G。Ragoisha,E。Streltsov,J。Kim和S. Myung,“ Hollandite-type type vo 1.75(OH)0.5:有效的钠存储空间,可用于高性能的钠含量储量储量储备金”。能量母校。,9(22):1900603(2019)。8。M。K. Cho,J。H. Jo,J。U. Choi,J。Kim,H。Yashiro,S。Yuan,L。Shi,L。Shi,Y。K. Sun和S. T. Myung,“隧道 - 型β-feooh阴极材料,用于通过新的转换反应的高速钠存储材料” Nano Enervy” Nano Enervy”,Nano Energy,41 687-696(2017)。9。W。Ko,T。Park,H。Park,Y。Lee,K。E. Lee和J. Kim,“ NA 0.97 KFE(SO 4)2:一种基于铁的硫酸盐阴极材料,具有NA-AIN电池的出色环境和功率能力” J。mater。化学。A,6(35):17095-17100(2018)。10。Y。liu,Z。Tai,Q。Zhang,H。Wang,W。K。Pang,H。K。Liu,K。Konstantinov和Z. Guo,“新的储能系统:可充电钾 - 固体电池电池” Nano Energy,Nano Energy,35 36-43(2017)。11。 n。Yabuuchi,M。Kajiyama,J。Iwatate,H。Nishikawa,S。Hitomi,R。Okuyama,R。Usui,Y。Yamada和S. Komaba,“ P2-Type Na X [Fe 1/2 Mn 1/2 Mn 1/2] O 2从地球上的Eroce-Babiflack Electement for Na na na na na na nata na nata nate nath nat nat natat。 mater。 ,11(6):512-517(2012)。 12。 C。 Zhao,Q。Wang,Z。Yao,J。Wang,B。Sánchez-Lengeling,F。Ding,X。 Hu,“用于钠离子电池的氧化氧化物材料的合理设计”,《科学》,370(6517):708-711(2020)。 13。 C。 Zhao,M。Avdeev,L。Chen和Y. S. Hu,“含钠含量低的O3型氧化物,为Yabuuchi,M。Kajiyama,J。Iwatate,H。Nishikawa,S。Hitomi,R。Okuyama,R。Usui,Y。Yamada和S. Komaba,“ P2-Type Na X [Fe 1/2 Mn 1/2 Mn 1/2] O 2从地球上的Eroce-Babiflack Electement for Na na na na na na nata na nata nate nath nat nat natat。mater。,11(6):512-517(2012)。12。C。Zhao,Q。Wang,Z。Yao,J。Wang,B。Sánchez-Lengeling,F。Ding,X。 Hu,“用于钠离子电池的氧化氧化物材料的合理设计”,《科学》,370(6517):708-711(2020)。13。C。Zhao,M。Avdeev,L。Chen和Y. S. Hu,“含钠含量低的O3型氧化物,为
细胞块D,隔离细胞,美国监禁的恶魔时间表美国是世界上最伟大的狱卒。我们拥有5%的全球人口和全球20%的囚犯。过去50年中,监狱人口增长了700%。该系统是种族主义者,以高6倍的速度监禁黑人,而土著人民的速度比白人高3倍。Our imprisonment regime grew from the pre-Civil War Slave Patrols, the post-Emancipation Black Codes used to control African Americans, private security militias used against labor dissent in the late 1800s, efforts in the 1960s to control Black, Native American and Latinx dissent, the War on Drugs that disproportionately targeted Black and Latinx communities, xenophobia, and the profits to be made from incarceration.这是如何发生的。