摘要:厄尔尼诺(ElNiño) - 南部振荡(ENSO)影响季节性大西洋热带气旋(TC)活性,通过对TC Genesis重要的环境条件进行影响。然而,未来气候变化对ENSO和大西洋TC之间的电信联系的影响尚不确定,因为预计气候变化会影响ENSO和平均气候状态。我们在热带通道域上使用了天气研究和预测模型,在不同的ENSO条件下,在历史和未来的气候下,在历史和未来的气候下模拟了5-MENT的大西洋TC季节。实验:每月变化的气候学,东部太平洋厄尔尼诺市,中部埃尔·埃尔尼诺尼诺和拉尼娜。与中央太平洋的埃尔尼诺(ElNiño)相比,在东部太平洋期间,历史模拟产生的大西洋TC较少,与观测和其他建模研究一致。对于每个ENSO状态,未来的模拟与大西洋TC产生了类似的远程连接,与历史模拟中一样。特别是,LaNiña继续增强大西洋TC活性,而Elniño继续抑制大西洋TC,与ElNiño中部相比,在东部太平洋地区,埃尔尼诺尼诺(ElNiño)在东部太平洋期间受到更大的抑制作用。我们的结果表明,ENSO将来将对季节性大西洋TC预测有用。In addition, we found a decrease in the Atlantic TC frequency in the future relative to historical regardless of ENSO state, which was associated with a future increase in northern tropical Atlantic vertical wind shear and a future decrease in the zonal tropical Paci fi c sea surface temperature (SST) gradient, correspond- ing to a more El Niño – like mean climate state.
[13] 2020-21美国干旱的2020-21,AGU秋季会议,美国旧金山,2023年12月。(海报)[12]陆地大气相互作用和热带南美洲的干旱,在美国帕利塞德的Lamont-Doherty Earth天文台举行的OCP研讨会,2023年9月。(口腔)[11]对热带南美极端土壤条件的水文气象反应建模:方法和物理机制,Nanjing University的大气科学学院,Virtual,2023年3月。(邀请的谈话)[10]解开土地表面状况和内部大气变异性对美国干旱发展的贡献,AMS年度会议,虚拟,2023年1月。(海报)[9]对热带南美极端土壤条件的水文学反应建模:方法论和物理机制,AGU秋季会议,美国芝加哥,2022年12月。(海报)[8]一种新的土壤初始化方法,用于研究中季陆地 - 大气相互作用,CESM工作组,虚拟,2022年6月。(口腔)[7]在热带南美,UCAR土地模型和生物地球化学工作组的季风前季节对极端土壤状况的水文学反应建模,虚拟,2022年1月。(口服)[6]对热带南美最新干旱的生态流水学反应,AMS年度会议,虚拟,2022年1月。(口服)[5]模拟了气候对南美极端土壤条件的建模,美国新奥尔良,美国新奥尔良,2021年12月。(海报)[4]模拟了南美气候对森林砍伐的三十年的反应,美国康涅狄格大学的民用与环境工程系,美国斯特尔斯,2021年4月。(口服)[3]在热带南美洲最近干旱,AGU秋季会议,虚拟,2020年12月的生态杂种反应中的差异。(口服)[2]探索使用区域气候竞争模型,AMS年度会议,美国波士顿,2020年1月。(海报)[1]建模土地覆盖变化对南美地区气候的影响,使用耦合区域模型,AGU秋季会议,美国旧金山,2019年12月。(海报)病房
会议时间:2024年冬季(从1月/10/2024开始)Mowefr 3:30-5:20pm(有时4:50 pm)1012 EEC(通常每周两次见面两次,有时每周3次,每周3次,以弥补一些损失的时间(旅行,一些较短的婚礼教练):Christiane jablonowsem jablonowski nigronoveig jablonowski nigronoveig nigronoveig nigronoveig nigh ofernowski nigronoveig nigronoveig nigh nigno of incy nigronoveig nigron。气候和空间科学和工程简短目录描述:该课程通过调查大气通用循环模型(GCM)的设计决策,GCM和Dynamilical Core建模的趋势以及GCM的方式来介绍最新的气候建模技术它是基于动手的GCM建模和数据项目,期刊论文讨论,讲座,共享网络基础结构和计算工具。长描述:1)概要:课程以最新的气候建模技术训练研究生。它调查了大气一般循环模型(GCM)中的许多设计决策,GCM和动态核心建模的趋势以及GCM与地球系统模型(ESM)中的陆地,海洋和冰分的耦合。此外,下一代ESM将需要具有更大的计算功能,具有可交换模型组件的透明软件设计,数据和模型的自我解释(元数据)描述,数据交换的在线网关和门户,云计算功能以及共享的科学协作的在线工作工作。学生将学习如何为气候和天气科学有效地使用现代软件基础架构和高性能计算系统(例如NCAR的DERECHO系统)。该课程将审查和利用各种气候和天气模型(例如社区地球系统模型(CESM)或由国家大气研究中心(NCAR)开发的跨尺度(MPA)的模型,能源部(DOE)Energy Exascale Exascale Exascale Excale地球系统模型(E3SM),或NOAA AAA的统一预测系统(UFS)和计算工具)。2)课程的总体目标:本课程完成后,GCM将不再是黑匣子。将使学生能够就如何在研究中使用GCMS以及GCM的局限性做出明智的决定。学生将接触到现实世界中的GCM和大气科学的软件实践,并将了解GCM设计文献和模型文档。