HyImpulse 及其合作伙伴 Adamant Composites 在开创性的无内衬 CFRP 氧气罐的静水爆破试验中取得成功 [2023 年 2 月,德国科赫尔河畔诺伊恩施塔特] – HyImpulse Technologies 与希腊先进复合材料制造商 Adamant Composites 合作,自豪地宣布成功完成了开创性的无内衬碳纤维增强聚合物 (CFRP) 液氧 (LOX) 罐的静水爆破试验。这标志着 HyImpulse 轨道小型发射器 SL1 开发的一个重要里程碑。静水爆破试验是任何压力容器开发的关键步骤,用于确保罐在极端条件下的安全性和可靠性。该测试使罐承受的压力远远超出正常运行时预期的压力,以识别任何潜在的弱点或故障点。无内衬 CFRP LOX 罐以优异的成绩通过了测试,证明了其能够承受远远超出其预期用途极限的压力。这是 HyImpulse 和 Adamant Composites 团队取得的一项重大成就,因为无内衬 CFRP 储罐在欧洲的太空应用中相对较新,尚未经过广泛测试。“我们对这次测试的结果感到非常兴奋,”HyImpulse 首席执行官 Mario Kobald 表示。“在我们的 LOX 储罐中使用无内衬 CFRP 显著提高了我们的性能,并减轻了重量和成本。这次成功的测试使我们距离将这项创新技术应用于 SL1 并彻底改变航天发射行业又近了一步。”“我们相信,彻底改变进入太空的方式需要彻底改变复合材料结构的设计和制造方式,”Adamant Composites 首席执行官 Antonios Vavouliotis 表示。“独特的全复合材料设计可节省 30% 的质量,而机器人启发的生产过程可将周期时间缩短 50%,成本降低 25%。”
摘要:碳纤维增强聚合物(CFRP)复合材料属于高级类复合材料,在战略应用中通常是首选。然而,在制备增强树脂,易发的基质和纤维 - 矩阵界面中形成的脆性,气泡通常会导致复合结构在分层和灾难性衰竭方面导致复合结构的失败。So, in the current work, Epoxy matrix CFRP composites are made using a hand lay-up process with varied amounts of Graphene Oxide (GO) (0%,0.25%,0.5%, and 1%) as a Nano Filler with Epoxy Polymer and nearly 90% of air bubbles are removed with the help of vacuum pump and desiccator.样品将根据ASTM标准制备,并在张力和3点弯曲条件下进行测试。在0.25%,1%GO增强复合材料的最大拉伸强度,最大弯曲强度为866.67mpa和761.22mpa。关键词:复合材料,CFRP,环氧树脂,碳纤维,拉伸试验,弯曲试验,氧化石墨烯(GO),环氧树脂,硬化剂
用于太空有效载荷的微波专为各种微波频率而设计。它们还能够承受严苛的太空和发射环境。它们为航天器系统中的组件提供电气接口,确保高可靠性。该封装由许多载板组成,基板附着在其上。载板用作金属载体,以支撑蚀刻微波电路的氧化铝基板。基于 CFRP 的载板的自主开发可能取代标准的基于 Kovar 的载板,以将质量减少六倍并使其比现有拓扑更轻。然而,与 Kovar 材料相比,CFRP 的导电性明显较低。较低的导电性直接影响散热、电磁屏蔽、载流能力和表面处理工艺。为了克服这些问题并获得充分的优势,可以将先进的纳米填料碳纳米管 (CNT) 添加到聚合物中。使用 CNT 复合材料不仅可以减轻重量,还可以改善热参数和电参数。本文概述了增强 CFRP 的热性能和电性能的研究,并有助于设计微波封装组件。挑战在于确定合适的制造技术、工艺参数和 CNT 复合材料的特性。
在本文中,提出了由高模量碳纤维增强聚合物(CFRP)层压板增强的结构钢梁的剪切和弯曲行为。完全,在3分弯曲测试设置下测试了18个钢样本,包括6个不加强的梁作为对照样品和12个具有简单支撑的强化钢梁。使用键合系统加强所有标本。研究了不同参数的影响,包括钢梁的长度,样品的截面大小,CFRP层压板的数量以及CFRP层压板的位置。基于预期的故障模式,在张力法兰,压缩法兰和梁网的表面上实现了粘合的层压板。在测试的梁中观察到了弯曲,剪切和侧向屈曲失败的三种故障模式。这些实验的主要目标是评估负载能力,梁延展性和初始刚度的增强。结果表明,加强钢梁的产量载荷,最终负载能力和能量吸收分别提高了15%,29%和28%。最后,为了预测测试结果并比较实际和预测的阀门,进行了分析和数值研究。
可展开天线在卫星行业中发挥着重要作用,因为它们在发射阶段体积小,但在选定轨道上展开后性能优异。牛津空间系统公司正在开发一种大型可展开天线 (LDA) 结构,其展开孔径可在 3 米至 6 米之间调整。本文介绍了基于 Sarrus-Pantograph 碳纤维增强聚合物 (CFRP) 反射器展开结构 (RDS) 的偏置反射器天线,该天线展开碳纤维增强硅胶 (CFRS) 预成型抛物面反射器表面和 CFRP 可展开臂,可将反射器定位在所需的焦距。本文还概述了工程模型 (EM) 测试活动的状态。1 简介
摘要:通过从宽频率范围内捕获光谱数据以及空间信息,高光谱成像 (HSI) 可以检测到温度、湿度和化学成分方面的细微差异。因此,HSI 已成功应用于各种应用,包括用于安全和防御的遥感、用于植被和农作物监测的精准农业、食品/饮料和药品质量控制。然而,对于碳纤维增强聚合物 (CFRP) 的状态监测和损伤检测,HSI 的使用是一个相对未触及的领域,因为现有的无损检测 (NDT) 技术主要侧重于提供有关结构物理完整性的信息,而不是材料成分。为此,HSI 可以提供一种独特的方法来应对这一挑战。本文以欧盟 H2020 FibreEUse 项目为背景,介绍了使用近红外 HSI 相机将 HSI 用于 CFRP 产品无损检测的应用。详细介绍了三个案例研究中的技术挑战和解决方案,包括粘合剂残留物检测、表面损伤检测和基于 Cobot 的自动化检测。实验结果充分证明了HSI及相关视觉技术在CFRP无损检测方面的巨大潜力,特别是满足工业制造环境的潜力。