近年来,由于对更可持续的能源和运输的需求越来越强劲,电动汽车市场和行业一直在迅速发展。随着这种更大的需求,出现了新的挑战,例如自主性和效率。体重在这两个参数中起着重要作用,因此减轻重量对于电动汽车的性能至关重要。另一方面,复合材料,尤其是碳纤维增强聚合物(CFRP),提供了经典金属材料的低重量替代品。在车辆中,可以通过复合材料改善机械性能的组件,同时减小结构重量,这是电池容器。在此组件中使用复合材料的使用变得越来越普遍,无论是在高性能的汽车中,例如机动运动还是常规运输车辆。复合材料不仅具有较高的电阻/权重关系,而且还提供了其他优势,例如低电导率和更大的刚性。他们也有可能制作更复杂的形式。与高性能运动运动一样,复合材料可用于工程相关的环境中,例如促进学生融合的竞赛。Formula Student是一项全球竞赛,在该竞争中,学生面临挑战和制造公式式跑步汽车的挑战。这些汽车可能具有燃烧,电动机或混合运动组。电动汽车的关键组成部分是其电池,因此是其容器,可以保证结构完整性和安全性。该容器由许多铝制团队制造。但是,许多团队选择在电动汽车市场之后使用复合材料。在本文中,提出了CFRP容器的概念来提高组件性能和安全性。经过一些设计迭代后,通过有限元素模拟研究了CFRP电池盒的性能。这样做不仅是为了了解新结构的行为,而且是为了确保它符合汽车将参与的比赛规定。还使用了复合材料的经典理论对分析模型进行了综述,这导致了某些模型与实验论文的比较。使用Altair HyperMesh进行临界加载案例进行层优化模拟,以减轻所选区域的重量或增加电阻。 最后,使用类似于累加器盒的材料进行实验测试,以创建一个工作流程,以在电池盒中使用的材料测试中使用。 关键字:复合材料,电动汽车,有限元素分析,学生公式,电池讲故事的人,模拟,弯曲测试。层优化模拟,以减轻所选区域的重量或增加电阻。最后,使用类似于累加器盒的材料进行实验测试,以创建一个工作流程,以在电池盒中使用的材料测试中使用。关键字:复合材料,电动汽车,有限元素分析,学生公式,电池讲故事的人,模拟,弯曲测试。
AFRP ARAMID纤维增强塑料一种基于Tri的化合物,具有钙钛矿结构,例如Bazro 3,Basno 3和Bahfo 3,短BAMO 3(M:METAR)化合物的芳香纤维纤维增强塑料的化合物。通过将这些BMO相掺入Rebco层作为杂质(人造固定中心),可以比平常获得更高的磁场特性。在PLD方法的情况下,RebCO和BMO相可以合作生长,通过沉积已提前与BMO掺杂的固体目标,并在RebCO层中形成了纳米棒形BMO相。顺便说一句,通过更改掺杂量和膜形成过程条件,可以在一定程度上更改BMO的形状和密度。 CFRP一种FRP,代表碳纤维增强塑料。 FRP是一种结合两种或多种材料的复合材料,通过将塑料(树脂)作为基础材料并将纤维添加为增强材料,可以将塑料的轻质和高成型自由结合起来,以及纤维的高刚度和强度特性。在FRP中,添加为加固材料的碳纤维称为CFRP。 FEM分析有限元法(FEM)分析。将连续对象分为有限的“元素”,使用简单的数学模型近似于每个元素的属性,并形成同时分析整体行为的方法。 FFD的电线面对面双堆叠的缩写。两条基于RE的超导电线的超导侧与焊料或类似相连。即使一根电线杆缺陷,电流也可以通过稳定层传递到另一根钢丝杆,从而增加了基于RE的超导线的产率。此外,应力中心是两条电线的中心,这使得具有高弯曲强度。 GFRP玻璃纤维增强塑料
Recent Advances in Injection Molding of Carbon Fiber Reinforced Thermoplastic Polymer Composites: A Review Wei Zou, 1 Xinbo Zheng, 2 Xiaodong Hu, 3 Jintao Huang, 2,* Guanghong Wang 1,* and Zhanhu Guo 4,* Abstract Carbon fiber reinforced polymer composites (CFRP) have excellent comprehensive mechanical properties, and become one of the轻巧组件的主要方法。在汽车行业,航空业和其他领域,它受到了越来越多的关注。为了提高生产率和质量,并更好地利用碳纤维增强聚合物复合材料,尤其是对于碳纤维增强的热塑性聚合物复合材料,本文首先回顾了碳纤维增强的碳纤维塑造热塑性聚合物聚合物复合材料的研究状态,最终讨论了该领域的本领域。
“这不仅有助于降低物流相关成本,还能通过赋予资源第二次生命来升级资源。它还为未来项目在技术和外观方面提供了新的机会,”Withings 磅秤产品经理 Antoine Joussain 强调道。该工程和设计解决方案的核心是 Fairmat 的创新技术,可生产 100% 回收的 CFRP 芯片——先进材料。这些再利用材料通过 Fairmat 先进的机械工艺、机器人技术、人工智能和数据驱动制造,在保持轻量化的同时提高了强度。Fairmat 注重用户友好型解决方案,承诺增强多功能性,为既环保又经济的产品设计树立新标准,同时显著改善客户体验
需要相互考虑这两个指标,以根据特定的任务和设计问题获得最佳的存储氢和存储系统的重量。尤其是对于CS23类的通用航空飞机,例如由Lange Research Firscraft制造的Antares E2,鉴于为氢存储的建造空间很低。因此,需要优化可用构建空间的容积存储利用,以存储足够的燃料以实现足够的飞行范围。因此,需要考虑通过增加存储利用率来最大化储存氢的数量。对于CFRP层压板的机械性能未优化的容器形状,主要导致这些血管形状的重量储存密度下降。需要优化重量储存密度和体积存储利用,以使氢用于通用航空。
摘要。铁路轴是火车车轮及其车身之间的重要连接。但是,循环载荷和高速可以引起铁路轴的疲劳,这可能导致损害人体安全。因此,重要的是要找到具有最低重量和成本的良好机械性能的材料。在本文中,已经执行了一种使用Ashby图表的综合方法,以选择铁路轴的候选材料。这些方法从确定问题,目标函数和约束来开始分析功能开始。之后,使用PAHL和Beitz定量加权方法对所获得的结果进行排名。结果表明,铁路轴的最佳五个候选材料分别是TI-6AL-4V,AISI 4130,EA16碳钢,Bismaleimide Matrix CFRP和7000 AL。
制造商:Inairvation 图片设计创作者:Pierrejean 设计工作室 推出时间:2014 年展示,2015 年认证 宽度:扶手之间 17-25 英寸 高度:座椅高度 15-18 英寸;整体 30-53 英寸 深度:18-20 英寸,取决于配置 重量:包括安装板在内的结构重量为 45-70 公斤,另加 30 公斤用于细节和有效载荷 构造材料:多个大型主要部件采用 CFRP,铝制座椅箱 标准功能:机械或电动释放跟踪(每个方向最多 5.5 英寸/沿一个轴移动 11 英寸;每个方向 190° 旋转;摇摆功能(可停用) 可选功能:腿托;头枕;向下滑动的扶手;第二个倾斜关节用于懒惰的 Z 位置;机电设施包括加热、冷却、按摩和电源插头 认证:所有大型飞机均获得 ETSO 16 g 和 9g 认证
制造商:Inairvation 图片设计创作者:Pierrejean 设计工作室 推出时间:2014 年展示,2015 年认证 宽度:扶手之间 17-25 英寸 高度:座椅高度 15-18 英寸;整体 30-53 英寸 深度:18-20 英寸,取决于配置 重量:包括安装板在内的结构重量为 45-70 公斤,另加 30 公斤用于细节和有效载荷 构造材料:多个大型主要部件采用 CFRP,铝制座椅箱 标准功能:机械或电动释放跟踪(每个方向最多 5.5 英寸/沿一个轴移动 11 英寸;每个方向 190° 旋转;摇摆功能(可停用) 可选功能:腿托;头枕;向下滑动的扶手;第二个倾斜关节用于懒惰的 Z 位置;机电设施包括加热、冷却、按摩和电源插头 认证:所有大型飞机均获得 ETSO 16 g 和 9g 认证
根据中国的研究,由于其良好的耐腐蚀性,使用纤维增强聚合物(FRP)复合材料钢筋钢筋钢筋钢筋钢筋钢筋钢筋钢筋钢筋作为替代海洋砂混凝土中传统钢棒的可行性。它探讨了FRP在海水海洋砂混凝土等碱性环境中提高建筑耐用性的潜力。该研究比较了玻璃纤维增强聚合物(GFRP)和碳纤维增强聚合物(CFRP)钢棒,FRP的预期寿命约为20至30年,突出了SWSSC中耐腐蚀性和性能的差异(海水和海水砂混合物)。它解决了腐蚀后FRP复合材料钢筋钢筋的故障特性,强调了树脂基质在维持与混凝土键合中的重要性。诸如寻找更多耐腐蚀的树脂矩阵或在光纤矩阵界面上添加层的策略,以增强FRP复合材料钢筋的性能。
2021 年 7 月,DLR 进行了人工失重测试活动。在专门的飞行日内,专用空客 A310 的整个 20 mx 5 m 测试区域可用于可展开高应变复合空间结构领域的 5 项实验。这里介绍的结果源自实验 No4,其中测试了 DLR 可展开 CFRP 桅杆的两种不同展开机制。这两种机制都使用新的接口概念将吊杆在展开期间和展开后以高刚度连接到卫星结构上。这两种概念在人工失重中都得到了广泛的评估,包括它们的安全展开和存放以及由此产生的界面刚度。为此,描述了飞机中的测试设置、测试计划和测试程序。最后,讨论了结果并提出了进一步开发吊杆和机制以及在人工失重下测试此类结构的建议。