该学院将重点关注理论高能物理的最新发展,包括 AdS/CFT 对应及其影响、黑洞的量子描述以及量子信息理论在量子场论和量子引力中的应用。该学院主要面向博士生、博士后和高年级本科生。注册费免费。
在埃塞俄比亚,在开始任何转基因生物 (GMO) 的研究和开发之前,必须获得埃塞俄比亚环境保护局 (EPA) 的批准和书面许可。该局的这一权力来自人民代表院批准的《生物安全(修订)公告》第 896/2015 号。EPA 根据申请人提供的数据、对实验室和田间试验地点的检查形成意见。这一决策权的补充是埃塞俄比亚联邦民主共和国部长理事会根据第 411/2017 号部长理事会条例成立的国家生物安全咨询委员会 (NBAC) 就生物安全相关问题提供的建议。2018 年,该局放宽了两种 Bt 棉花品种的管制,使该国首次正式接受转基因或生物技术作物产品。到目前为止,该机构已经颁发了对 bt 棉花和转基因 enset 进行实验室封闭试验的许可证和对两种玉米杂交品种 (TELA TM ) 进行田间封闭试验 (CFT) 的许可证、对 3 个 R 基因晚疫病抗性 (LBR) 堆叠顺式马铃薯的 CFT 许可证以及对三基因 BT-GT 杂交棉花品种的 CFT 许可证。新的育种技术及其产品正在进入全球市场,有望实现高生产力,实现可持续的未来粮食安全。这项工作研究了这些发展以及所选国家随之而来的安全问题和监管困境。然后,它评估了埃塞俄比亚生物安全框架相对于新育种技术的现状。这里提供的证据表明,埃塞俄比亚需要制定处理新育种技术产品的指南。关键词:育种技术、生物安全监管和转基因
在没有全息原理 [3, 4, 5] 的传统量子引力解释 [1, 2] 中,量子态是整个宇宙的量子态。在这种解释中,玻恩规则的一个典型应用是暴胀多元宇宙场景 [6, 7, 8]。作者采取不同的方法,在三维反德西特时空/二维共形场论 (AdS 3 /CFT 2 ) 对应 [11, 12, 13, 14] 的背景下,在边界 CFT 2 的强耦合极限 [15, 16, 17, 18, 19, 20, 21, 22, 23],提出了一种基于全息原理 [3, 4, 5] 的量子引力新解释 [9, 10]。在这种量子引力解释中,对基态或空间纯化量子热平衡态,即全息张量网络(HTN)[19, 20, 21]进行非选择性量子测量[24],在量子力学的集合解释中,是通过完全消相干该量子态的量子相干性来实现的。消相干(即可观测量量子干涉的损失)正是通过引入超选择规则算子,然后将作用于 HTN 的希尔伯特空间的可观测量集限制为阿贝尔集(其元素与超选择规则算子可交换)来实现的[25]。作者将这种退相干称为经典化。量子引力的经典化不是经典引力;事实上,HTN 的经典化状态仍然是一种量子态,但却是一种高度非平凡的混合态。由于该量子态是乘积量子本征态的统计混合,因此存在负局部自由度 [10, 25]。到目前为止,我们已经在 HTN 的欧几里德区域对空间进行了经典化,即边界 CFT 2 的纯净量子热平衡态(包括基态)[9, 10, 25, 26]。然后,为了在 Lorentzian 区域中制定时间相关的 HTN,
在过去的几十年中,Liouville田间理论在批判性和非关键弦理论以及一般相对论方面引起了研究人员的极大关注。可以证明,为了量化2-D坟墓,主要问题最终归结为找到Liouville田间理论的特征。作为字符串理论是关于在2D世界表上工作的全部内容,因此Liouville Fields和世界表格几何形状之间存在直接耦合。同样,在某些统计模型的相位过渡中,它具有深刻的应用,这使该理论值得研究。liouville田间理论(LFT)也是最简单的非统一田地理论(CFT),具有连续的主要领域频谱,它是开发技术的原型,可以帮助您研究更复杂的CFT。在这篇简短的文章中,我将从共同场理论的角度提供对liouville理论的介绍。我将从2-D重力开始,以提供学习LFT的动力。
慢性疼痛影响全球大约30.3%的成年人,提出了一个重大的全球健康问题,严重影响了个人的生活质量并带来了重大的社会经济挑战。传统的疼痛管理方法,例如物理疗法和药理治疗,主要集中于疼痛的生物学方面,同时经常忽略心理和社会因素。然而,神经科学的最新进展表明,慢性疼痛受到中枢神经系统的变化的影响,包括中枢敏化和神经可塑性等机制。本文研究了当代神经科学知识的干预措施,包括疼痛神经科学教育(PNE),正念实践和认知功能疗法(CFT),这些疗法(CFT)针对这些神经生物学变化,以改善疼痛感知和行为。这些干预措施有助于恢复大脑的疼痛途径,促进长期缓解疼痛和功能恢复。此外,将基于神经科学的方法与常规疗法结合起来可增强治疗结果。这项工作强调了对个性化方法的需求以及新兴技术的整合,以增强慢性疼痛管理的可及性和有效性。
课程先决条件 Cr CRJ 302 CRJ 301 3 CRJ 432 CRJ 130 3 CRJ 1 st 内容领域 3 相关领域 UD 3 GSC 300 ENG 102 以及以下之一:URST 241、CRJ 270、COM 101、COM 102、ENV 101、JOUR 102、JOUR 207、CFT 225 或 SWK 101
近年来,在建立几何与引力与量子纠缠之间的新关系方面取得了重大进展。一个重要的例子是 Ryu-Takayanagi 公式 [1],它在 AdS = CFT 对应关系 [2] 的背景下将共形场论 (CFT) 的纠缠熵与反德西特 (AdS) 空间中极小曲面的面积联系起来。此外,ER¼EPR 猜想 [3] 认为,热场双态 (TFD) 中的纠缠可以通过 AdS 空间中不可穿越虫洞中的测地线全息实现。测地线的长度(横跨 AdS 空间的两个边界)量化了纠缠量 [4]。在更简单的环境中,半经典惠勒虫洞 [5,6] 提供了一个早期的例子。该解的一个重要特征是所涉及的磁场不能以矢量势的形式全局写出。这相当于非精确辛形式,产生量化通量,类似于磁单极子 [7] 。最近,H. Verlinde [8] 通过分析虫洞的配分函数研究了量子力学虫洞的例子。对于具有非精确辛形式的系统,热配分函数变为
目的:AEWE是陆军在小型单位层面的主要实验场所。AEWE通过提供跨职能团队(CFT),卓越中心(COE)能力开发人员,科学与技术(S&T)社区以及行业一个可重复的,可信,严格的,严格的和AFC G2 TE为支持概念和材料开发的经营验证的运营实验。
通常与Defi市场规模相关。从历史上看,大多数Defi hacks是源于链上漏洞(主要是通过智能合同脆弱性的利用),但在利用离链脆弱性时,最近对Defi的攻击似乎更为成功(例如,损害用户的私钥)。该报告还发现,DEFI协议具有ML/TF的重大风险,在分散交易所的流量上,占全球现货加密交易量的10%。这主要是由于目前没有足够的AML/CFT控件,这意味着用户可以在实践中进行交易而无需识别和验证。由于交易的跨境性质而增加了风险,因为可以通过DEFI转移来自潜在非法来源的资金或加密资产,而无需对协议对此类资金或加密资产进行AML/CFT检查的任何义务,并将其报告给财务智能单位。该报告确定了在DEFI协议中应用KYC的一些计划。与MEV有关,该报告得出结论,由于基础区块链的分散性质,这些活动在DEFI中是广泛的。但是,减轻MEV的负面外部性需要进一步考虑技术解决方案。