囊性纤维化(CF)是一种由CF跨膜诱导调节剂(CFTR)蛋白的产生和/或功能受损引起的单基因疾病。尽管我们先前已经显示出对最常见的致病突变的校正,但整个CF基因中还有许多其他致病突变。精确插入CFTR cDNA的自体气道干细胞疗法,无论因果突变如何,几乎所有CF的CFTR基因座都可以为几乎所有CF papentent摄取耐用的治疗方法。在这里,我们使用CRISPR-CAS9和两个与CFTR cDNA的两半相关的病毒(AAVS),在上部机构干细胞(UABCS)和人类bronthial Checepselial Chial Chirial Chips(Hymanthial Chialical Clonial Clonial Clonial Clonial Chilial Chialial Clial Cyselial Chillial Cyselial Chirial Chirial Chillial Clyeclial)(Huncseps)(TCD19)和截断的CD19(TCD19),顺序插入完整的CFTR cDNA(TCD19)。从11个不同的CF供体中获得60%至80%的TCD19 + UABC和HBEC,并从11个不同的CF供体中获得60% - 80%的TCD19 + UABC和HBEC。在空气界面上培养的分化上皮单层显示出恢复的CFTR函数,在非CF对照中占CFTR函数的70%。因此,我们的研究可以为几乎所有CF患者(包括无法使用最近批准的调节剂疗法治疗的患者)开发治疗。
一种替代全长 CFTR cDNA 的“通用策略”可治疗 99% 以上的囊性纤维化 (pwCF) 患者,无论他们的具体突变如何。基于 Cas9 的基因编辑被用于在气道基底干细胞的 CFTR 基因座处插入 CFTR cDNA 和截短的 CD19 (tCD19) 富集标签。该策略将 CFTR 功能恢复到非 CF 水平。在这里,我们通过评估 CFTR cDNA 插入后的基因组和调控变化来研究这种方法的安全性。首先通过使用 CAST-seq 量化基因重排来评估安全性。在验证编辑和富集的气道细胞中恢复的 CFTR 功能后,使用 ATAC-seq 表征 CFTR 基因座开放染色质谱。使用 scRNA-seq 评估编辑细胞中的再生潜力和差异基因表达。 CAST-seq 发现 0.01% 的等位基因发生易位,主要发生在非致癌脱靶位点,1% 的等位基因发生大量插入缺失。分化气道上皮细胞的开放染色质谱除 CFTR cDNA 和 tCD19 盒对应的区域外,没有出现明显变化,表明基因调控没有可检测到的变化。编辑后的干细胞产生的气道细胞类型与对照相同,基因表达的改变最小。总体而言,通用策略显示出轻微的不良基因组变化。
1加州大学洛杉矶分校生物工程系,加利福尼亚州洛杉矶,90095年,美国2,加利福尼亚州洛杉矶大学,加利福尼亚大学90095的加利福尼亚大学,洛杉矶分校的戴维·盖芬医学院儿科,加利福尼亚州洛杉矶大学,3美国3. 3. 3.美国3号,洛斯科群岛,加利福尼亚州。 United States 4 Cystic Fibrosis Foundation, Cystic Fibrosis Foundation Therapeutics Laboratory, Lexington, MA, 02421, United States 5 Department of Pediatrics, School of Medicine, University of California, San Diego, San Diego, California 92103, United States 6 Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, United States 7加利福尼亚大学分子和医学药理学系,洛杉矶分子,加利福尼亚州洛杉矶90095,美国8加利福尼亚纳米系统研究所,加利福尼亚大学,洛杉矶分校,洛杉矶,洛杉矶,加利福尼亚州90095摘要
Title: Gene expression responses of CF airway epithelial cells exposed to elexacaftor/tezacaftor/ivacaftor (ETI) suggest benefits beyond improved CFTR channel function Authors: Thomas H. Hampton 1 , Roxanna Barnaby 1 , Carolyn Roche 1 , Amanda Nymon 1 , Kiyoshi Ferreira Fukutani 1 , Todd A. MacKenzie 2 ,和Bruce A. Stanton* 1 Thomas H. Hampton博士1美国新罕布什尔州汉诺威市Geisel医学院微生物和免疫学系电子邮件: amandanymon@gmail.com Kiyoshi Ferreira Fukutani,博士电子邮件:kiyoshi.ferreira.fukutani@dartmouth.edu todd A. Mackenzie,博士2美国新罕布什尔州黎巴嫩达特茅斯盖塞尔医学院生物医学数据科学系 *通讯作者:布鲁斯·A·斯坦顿博士。微生物学和免疫学系Geisel医学院,达特茅斯520 Remsen Building Hanover NH 03755电话:603-646-5396电子邮件:bruce.a.stanton@dartmouth.edu摘要:Elexacaftor/tezacaftor/tezacaftor/ivacaftor/ivacaftor(eti fiikectik reigral inibral inibral inibristion conversion intrigry repription intrike)通过改善气道上皮细胞(AEC)分泌CFTR介导的CL-和HCO 3-导致肺功能的改善,频繁的病情较低。然而,研究表明,诸如ETI的组成部分Ivacaftor之类的CFTR调节剂对改善CFTR通道功能的CF细胞具有许多影响。由于对ETI对CF AEC基因表达的影响知之甚少,因此我们将原代人AEC暴露于ETI 48小时,并通过RNA-SEQ和QPCR询问转录组。eti增加了防御素基因表达(DEFB1)的观察结果,与CF患者(PWCF)肺部细菌负担减轻的报道一致。eti还降低了MMP10和MMP12基因表达,这表明ETI可能会减少蛋白水解诱导的肺破坏
文章类型:原始文章目标:囊性纤维化(CF)是一种遗传常染色体隐性疾病,是由囊性纤维化跨膜电导调节剂(CFTR)基因突变引起的。本研究旨在研究外周血单核细胞(PBMC)中CRISPR使用CRISPR对CFTR基因进行CF的遗传修饰。材料和方法:设计了两个单个引导RNA,以靶向CFTR基因中的序列。通过使用荧光显微镜评估绿色荧光蛋白(GFP)表达,检查了PBMC细胞的转染效率。此外,测试了SGRNA-CAS9质粒以靶向CFTR基因。通过PCR和Sanger测序方法评估并确认ΔF508基因修饰。结果:我们的结果表明使用CRISPR/CAS9系统靶向位点特异性基因的可行性。在突变基因座中使用CRISPR校正了33%的样品,并通过NCBI数据库的序列BLAST和手臂基因座外的底漆确认。crispr/cas9方法代表了修复PBMC细胞中CFTR基因突变的有效工具。结论:因此,CRISPR系统可以高效且具有特定的特异性,并为细胞和模型动物的基因工程提供了强大的方法。通常,提出的方法对人类疾病的治疗开辟了新的见解。
CF是一种威胁生命的常染色体隐性遗传疾病,涉及外分泌和内分泌腺功能障碍。CF主要影响呼吸系统和消化系统。cf是由编码CFTR蛋白的基因突变引起的,该突变导致氯化物分泌降低,并增加了细胞钠和水的重吸收。缺乏CFTR功能会导致粘性分泌物,这很难清除,从而增加了对生命威胁肺部感染的敏感性。此外,粘性分泌物阻碍了胰管并破坏消化过程,导致食物吸收不良。CF症状的改善和预防感染的标准疗法。CFTR调节剂是通过调节有缺陷的CFTR的结构和功能来改善氯化物转运的新疗法。有超过1,700个已知的CFTR突变。可能适合当前CFTR疗法的突变类别包括门控突变,传导突变,剪接突变,蛋白质加工突变和残留功能突变。患者对CFTR调节剂治疗的反应取决于患者的CFTR突变类别。同一突变类中的某些突变对相同的CFTR调节剂治疗反应。kalydeco(ivacaftor)是初始的CFTR调制器,通过与CFTR蛋白结合并增加通道处于开放位置的时间来充当增强剂。后来的CFTR调制器都包括校正器,可帮助CFTR蛋白正确折叠并到达细胞表面。iii。策略orkambi将ivacaftor与lumacaftor结合在一起。Symdeko将ivacaftor与Tezacaftor结合在一起。Orkambi和Symdeko之间的主要区别是药物与药物相互作用。trikafta是一种三重组合CFTR调节剂药物,在ivacaftor和tezacaftor中添加了新的组件elexafaftor。elexacaftor与Tezacaftor协同作用,从而更加纠正有缺陷的CFTR和实质性的临床益处。
1计算生物学计划,彼得·马卡卢姆(Peter MacCallum)癌症中心,澳大利亚维克帕克维尔市7 2呼吸道疾病,默多克儿童研究所,澳大利亚帕克维尔,帕克维尔,澳大利亚帕克维尔8 3 3 3墨尔本大学,帕克维尔大学,帕克维尔大学,维克,维克,维克,维克,澳大利亚9 4呼吸和睡眠医院澳大利亚VIC帕克维尔12 6 6 6墨尔本大学医学生物学系,澳大利亚帕克维尔大学,澳大利亚帕克维尔13 7 Garvan-Weizmann蜂窝基因组学中心,加尔万医学研究所,新南威尔士州悉尼14号,澳大利亚悉尼14 15 8 8 8 UNW Cellular Genomics Futures Institute,New South Wales,New Southney,New Sydney,Newne of Melbcoltion of Mer Berimol,16澳大利亚爵士。帕克维尔,维克,18澳大利亚19 10 10数学与统计学院,墨尔本大学,帕克维尔,维克,澳大利亚20 21 *同等22#通讯作者23
摘要囊性纤维化跨膜电导调节剂(CFTR)阴离子通道和上皮Na +通道(ENAC)在许多上皮组织中在跨层离子和流体转运中起着重要作用。两个通道的抑制剂都是在体外定义其生理作用的重要工具。然而,两个常用的CFTR抑制剂CFTR INH -172和GLYH-101(也抑制非CFTR阴离子通道),表明它们不是CFTR的特异性。然而,迄今为止,这些抑制剂对上皮阳离子通道的潜在靶向效应尚未解决。在这里,我们表明,两个CFTR阻滞剂都以许多研究人员的常规使用浓度造成了对商店经营的钙进入(SOCE)的显着抑制,这些钙进入(SOCE)是时间依赖性,可逆的,并且独立于CFTR。斑块夹的实验表明,CFTR INH -172和GLYH-101都引起了ORAI1介导的全细胞电流的显着块,确定它们可能通过调制该Ca 2+释放激活的Ca 2+(CRAC)通道来减少SOCE。除了对钙通道的脱靶影响外,两种抑制剂在异武卵母细胞异源表达后都显着降低了人αβγ-ENAC介导的电流,但对Δβ-ENAC功能的影响有所不同。分子对接确定了两个CFTR阻滞剂的ENAC细胞外域中的两个假定结合位点。一起,我们的结果表明,在使用这两个CFTR抑制剂来剖析CFTR和潜在的ENAC在生理过程中的作用时,需要谨慎。
摘要:囊性纤维化是一种危及生命的疾病,影响着全球至少 100,000 人。该病是由囊性纤维化跨膜调节器 (CFTR) 基因缺陷引起的,目前已发现 360 种 CFTR 致病突变。自发现 CFTR 基因以来,人们越来越期望开发出能够大幅提高生活质量甚至治愈囊性纤维化患者的治疗方法。然而,目前仍不确定哪种正在开发的治疗方法能够成功治疗囊性纤维化。本研究通过评估参与全球网络调查的 524 多名囊性纤维化研究人员的意见来解决这一问题。对于大多数受访者来说,CFTR 调节剂疗法最有可能在未来 15 年内成功治疗囊性纤维化,尤其是通过使用 CFTR 调节剂组合。大多数受访者还认为,修复或替换 CFTR 基因将在 15 年内治愈囊性纤维化,而 CRISPR-Cas9 是最有可能实现此目的的基因工具。