更换 B330 的单台冷却器,NSAM FFP Carrier 型号 30RA – 900- - - 010,208/230 VAC 60Hz 3 相,制造于 2001 年。该装置是 Ingersoll 高速计算机实验室的专用系统,可直接向机架式热交换器提供冷冻水。承包商将增加主楼冷却器回路辅助端口,以支持 HPC 实验室冷却器回路并在 HPC 冷却器更换期间提供冷却。更换的冷却器应具有高效率,选择与现有系统有效运行并在部分负载下有效运行,并设计用于沿海环境;采用环氧涂层冷凝器盘管,旨在最大程度地提高耐腐蚀性。新的冷却器必须集成到现有的 DDC 系统中。FOB:目的地采购申请编号:ACQR5840416 PSC CD:Z2CZ
注册不同的冷水机组型号,或继续提交冷水机组注册的注册费。注意:每个冷水机组型号的注册都有注册费。可以通过添加更多注册并选择要付款的注册来进行批量付款。
RTAA 70-125 冷水机组亮点 • 多年的研究、测试和成功应用。Trane 螺旋旋转压缩机已积累了数千小时的测试,其中大部分是在严苛的工作条件下进行的。更不用说,RTAA 冷水机组自 1994 年以来的成功应用,享有行业标准的声誉。• 通过压缩机和完整冷水机组的工厂测试以及冷水机组配件的工厂安装,实现无故障启动。• 高压缩机可靠性和自适应控制™,使冷水机组在恶劣条件下也能在线生产冷水。占地面积小,所需应用空间(操作占地面积)是业内最小的。• 占地面积小,所需应用空间(操作占地面积)是业内最小的。• 低噪音水平和附件选项,适用于对声音敏感的应用。• ± ½°F 出水温度控制(0.3°C),由 PID 前馈控制和线性负载匹配产生,同时允许每分钟 10% 的流量变化,同时保持 ± ½°F 出水温度控制。
与上述流量限制类似,许多工艺冷却作业需要的温度范围超出了冷却器允许的最小和最大操作值。下图 2 显示了混合水管道布置变化的简单示例,该变化可以允许冷却器可靠运行,同时满足此类冷却条件。例如,实验室负载需要 5 l/s 的水以 30°C 进入工艺,并以 35°C 流回。冷却器的最大冷却水出口温度为 15.6°C。在所示的示例中,冷却器和工艺流量相等,但这不是必需的。例如,如果冷却器的流量更高,则只会有更多的水绕过并与返回冷却器的温水混合。
与上述流量限制类似,许多工艺冷却作业需要的温度范围超出了冷却器允许的最小和最大操作值。下图 2 显示了混合水管道布置变化的简单示例,该变化可以允许冷却器可靠运行,同时满足此类冷却条件。例如,实验室负载需要 5 l/s 的水以 30°C 进入工艺,并以 35°C 流回。冷却器的最大冷却水出口温度为 15.6°C。在所示的示例中,冷却器和工艺流量相等,但这不是必需的。例如,如果冷却器的流量更高,则只会有更多的水绕过并与返回冷却器的温水混合。
与上述流量限制类似,许多工艺冷却作业需要的温度范围超出了冷却器允许的最小和最大操作值。下图 2 显示了混合水管道布置变化的简单示例,该变化可以允许冷却器可靠运行,同时满足此类冷却条件。例如,实验室负载需要 5 l/s 的水以 30°C 进入工艺,并以 35°C 流回。冷却器的最大冷却水出口温度为 15.6°C。在所示的示例中,冷却器和工艺流量相等,但这不是必需的。例如,如果冷却器的流量更高,则只会有更多的水绕过并与返回冷却器的温水混合。
C118L-E:在冷却器应用中针对R410A进行了优化的蒸发器,从40到200kW。C118-E:用于冷却器应用中中等密度制冷剂的蒸发器,从40到200kW。C118L-C:在冷却器应用中优化的冷凝器,从40到200kW。C118-C:在冷却器应用中针对中密度制冷剂优化的冷凝器,从40到200kW。H118L-C:在20至150kW的热泵应用中针对高密度制冷剂进行了优化的冷凝器。H118-C:在20至150kW的热泵应用中针对中等密度制冷剂优化的冷凝器。H118L-E:在20至120kW的热泵应用中针对R410A进行了优化的蒸发器。H118-E:中等密度制冷剂在热泵应用中的蒸发器,从20至120kW。
根据中华人民共和国香港特别行政区机电工程署(EMSD)编制的《2023 年香港能源最终用途数据》,2021 年空调占香港最终用途总电力消耗的约 30% [1]。为实现碳中和,政府在《香港气候行动计划》(“该计划”)[2]中制定了路线图,提出到 2050 年将商业建筑的电力消耗减少 30-40% 的目标,其中减少空调系统(特别是其核心部件即制冷机房)的能源使用无疑是实现目标的关键措施之一。本文旨在介绍在香港多座在役政府和公共建筑中实施人工智能(AI)制冷机房优化过程中面临的挑战和障碍以及获得的经验。文中阐述了最适合安装人工智能的工厂配置,并利用人工神经网络 (ANN) 技术和粒子群优化 (PSO) 算法说明了优化策略。结果显示,智能化和活力化的制冷机组节能 5-10% 令人鼓舞,有助于加快实现碳中和的步伐。
许多工艺冷却应用所需的温度范围超出了冷却器允许的最小和最大工作值。下图显示了混合水管道布置变化的简单示例,该变化可以在满足此类冷却条件的同时实现冷却器可靠运行。例如,实验室负载需要 238 gpm (5 l/s) 的水以 86°F (30°C) 的温度进入工艺过程,并以 95°F (35°C) 的温度返回。冷却器的最大冷却水出口温度为 65°F (15.6°C),无法直接供应给负载。在所示的示例中,冷却器和工艺流速相等,但这不是必需的。例如,如果冷却器的流速更高,那么就会有更多的水绕过并与返回冷却器的温水混合。