她的脖子和风管的前部插入管子,形成了一条呼吸道以帮助呼吸。当Assyifa'在2022年满2岁时,她进行了双开关操作,这是两个过程的过程,其中室和大动脉都被切换。手术由NUHCS司法诊所心脏手术部门负责人Kiraly教授领导,花了10多个小时以上。在第一个过程中,外科医生通过进行心房开关来纠正心脏的血液流动。该过程重塑了上腔的一部分,以帮助将贫血的血液引导到肺部,并像普通的心脏一样,将富含氧气的血液引向身体的其余部分。在下一个过程中,外科医生切换了大动脉的位置 - 主动脉和肺动脉。这涉及将主动脉与左心室和肺动脉重新连接到右心室,从而恢复正常的血液流向身体和肺部。由于阿西法(Assyifa)缺乏肺动脉,使用阀门的导管进行手术。助理教授Chen Ching套件是NUH的Khoo Teck Puat(Nuthersity Childris Medical Institute of Khoo Teck Puat)的小儿心脏病学高级顾问,他说,在过去的10年中,在新加坡进行的双开关操作少于10例。根据基拉利教授的说法,阿西法(Assyifa)是新加坡最年轻,最小的患者,可以接受该程序。为手术做准备,由于其心脏状况的复杂性而进行了广泛的计划,专门的调查和高级调查。NUHCS小儿心脏手术师委托人Senthil Kumar Subbian博士说,手术本身非常复杂,要求对Assyifa的心脏解剖结构进行准确而彻底的了解。“此过程中不可能有不确定性的余地,这就是为什么我们创建了3D打印模型的型号。
在实际公司数据上展示流程挖掘可能是由于对数据隐私,监管限制和对竞争优势的考虑而导致的访问有限,这可能是具有挑战性的。在许多情况下,公司不愿共享其数据,因为它可能包含可能损害其业务的敏感信息,并且规范限制可能会进一步限制与外部方面的数据共享。尽管面临这些挑战,但人们越来越认识到过程采矿(包括现实数据)可以带给组织所带来的重大好处。为了克服这些挑战,公司可以使用综合或模拟数据作为展示和了解过程采矿的潜在好处的手段。但是,合成或模拟数据的使用具有局限性,因为它可能无法准确反映现实过程中的复杂性和细微差别。为了探索这些方法的潜力,竞争性的实时策略(RTS)游戏可以作为在时间压力下在复杂环境中进行决策分析的绝佳代理。在这种情况下,游戏数据是一个受控的实验环境(Wagner 2006),如其他与业务相关的学术研究(例如Clement(2023)(2023),Künn等人的作品。(2023)和Ching等。(2021)。表1将RTS游戏中的典型挑战与公司决策联系起来。RTS匹配的游戏历史记录在日志文件中持续存在。使用数据驱动的方法为此目的这些文件包含游戏中每个给定动作命令的事件日志,因此包含有关玩家行为的丰富数据,例如玩家采取的动作序列,他们分配的资源以及他们做出的战略决策。通过分析这些日志,研究人员可以对玩家行为和决策产生洞察力,可用于在竞争性理性环境中为过程提供和改善过程采矿和过程发现技术。
吉隆坡 - 您是否知道预计大约有833,000个人会受到全球头颈癌的影响,亚洲人可能占所有死亡率的80%?如果有一种方法可以识别导致癌细胞生长和消除它们的基因怎么办?马来西亚科学家最近完成了一项研究,以寻找头颈癌的遗传脆弱性。团队利用CRISPR/CAS9,这是一种诺贝尔奖获奖的遗传剪刀,帮助他们识别可以靶向杀死肿瘤细胞的基因。这项研究是对独特的口腔癌细胞系集合进行的,其中大多数来自马来西亚口腔癌患者。“使用这项技术,我们能够筛选成千上万个基因,以识别导致口腔癌细胞生长的少数基因。这些基因现在已成为开发靶向治疗的首要列表 - 杀死癌细胞的治疗,同时保留正常的健康细胞。癌症研究马来西亚是第一个使用尖端的CRISPR/CAS9基因编辑技术的组织,以确保与癌症的斗争不会错过亚洲人常见的癌症。“口腔癌在亚洲更为普遍,是印度男性与癌症相关死亡的最常见原因。当我们进入精确医学时代时,我们已经到达了一个可以
今年,我们的学校与其他几所当地中学组成了两个联合团队,参加了国际基因工程机器竞赛(IGEM)。团队“ HK-ord-School”由TWGHS的九龙True Light School的学生组成,Wu York Yu纪念学院,Hoi Ping Chamber of Secondary Schoop,Baptist Lui Ming Choi中学和Carmel Pak U中学和我们的学校和我们的学校和我们的学校。“ HK-United”团队由Tsung Tsin Christian Academy,Pope Paul VI学院,基督教和传教士Alliance Sun Kei中学,Pui Ching中学,Wah Yan College,Kowloon和我们的学校组成。两支球队于10月中旬前往巴黎参加IGEM大Jamboree,在那里取得了非凡的成绩:HK-Con-Con-School团队赢得了金牌,最佳教育提名和最佳模特提名,而HK-Atited Team则获得了银牌。由马萨诸塞州理工学院于2003年创立,IGEM是国际生物技术领域中最负盛名,最既定的竞争,每年吸引高中生,大学生和来自世界各地的研究人员。今年,IGEM拥有来自48个国家 /地区的410多个研究团队,共有9,507名参与者。HK - 接头学校团队对“合成具有肺癌治疗潜在价值的抗癌肽的合成”研究,使用人工智能开发新型的抗癌肽。他们还应用了知识来教育同龄人和社区,从而提高了人们对肺癌的认识。在他们的研究中,该小组采访了癌症幸存者,生物医学初创企业,传统中药从业人员和医学专家,包括Cuhk的即将上任的丹尼斯·卢·尤克·明(Dennis Lo Yuk Ming),以及肺癌专家BBS,BBS教授。
2023 年和 2024 年,美国临床药学学院董事会(以下简称“董事会”)在其持续规划过程中正式重新审视并更新了学院的战略计划。与过去的规划工作一样,董事会采用这种方法来制定、实施和监督组织的综合战略计划。该过程需要对组织方向有共同的愿景,并认识到学院相互关联的企业实体——ACCP、ACCP 基金会和药物治疗出版物公司——的各个使命都以独特的方式为实现这一愿景做出贡献。在制定此次更新时,董事会审查了 2020 年战略计划中确定的三个关键问题,并确认了它们在整个组织的持续相关性和适用性,为每个关键问题制定了新的或修订的战略方向,同时为每个战略方向设定了新的目标。关键问题是当前的问题或关注点,被确定为学院成功实现其使命的关键。它们并非旨在反映实现 ACCP 使命的每个重要组成部分。相反,它们旨在捕捉短期至中期内最重要的问题。战略方向是旨在表达组织解决关键问题的方法的意向声明。在某些战略规划模型中,它们被称为“目标声明”。目标是具体的、可实现的、有时间限制的行动或结果,旨在有助于实现战略方向。董事会还试图确定应添加到计划中的任何新的或正在出现的关键问题。尽管董事会成员没有发现新的、总体的关键问题,但他们制定了许多新的战略方向和目标。董事会还纳入并更新了战略方向和目标
学生宿舍省钱 Ku Ching Yong 1、Zamri Noranai 1、* 1 马来西亚敦胡先翁大学机械与制造工程学院,峇株巴辖,86400,马来西亚 * 通讯作者名称 DOI:https://doi.org/10.30880/ rpmme.2021.02.02.007 收到日期:2021 年 8 月 2 日;接受日期:2021 年 11 月 27 日;2021 年 12 月 25 日在线提供 摘要:马来西亚位于赤道地区的战略位置,在太阳能生产方面具有优势。位于柔佛州帕里拉惹的 Bistari Hostel 有 168 栋房屋,靠近马来西亚敦胡先翁大学 (UTHM) 的主校区,是学生在 UTHM 大学生活中最好的住宿之一。本研究重点关注 Bistari 旅馆的太阳能收集,旨在确定如果在 B1、B2、B3、B4 栋楼顶和 Bistari 旅馆停车场安装太阳能光伏系统,可以降低多少电费。本文将研究的太阳能光伏组件由晶科能源生产。Bistari 旅馆的能源消耗来自 Uten Holdings Sdn. Bhd.(业主),并估算了如果所有房屋都出租时的能源使用量。确定了晶科能源五种太阳能光伏系统的潜在应用,在本研究中,根据其发电能力选择了最高效的太阳能光伏系统。如果在 Bistari 旅馆安装太阳能光伏系统,预计可以节省超过 25% 的能源成本,结果表明太阳能光伏系统会产生多余的电力。在未来的研究中,可以纳入更多因素来确定太阳能电池板的有效性,例如退化率、安装和维护成本以及回收期。关键词:太阳能光伏、电力使用、效率
摘要 当今世界正朝着更加可持续的未来转型。全球范围内都在推动和实施减少温室气体 (GHG) 排放的行动,包括转向电动汽车 (EV) 和太阳能光伏 (PV) 等可再生能源技术。这导致近十年来全球电动汽车和光伏的应用大幅增加。然而,电动汽车和光伏在建筑物和配电系统中的大规模集成带来了新的挑战,例如峰值负荷增加、功率不匹配、组件过载和电压违规等。改善电动汽车、光伏和其他建筑电力负荷之间的协同作用可以克服这些挑战。电动汽车的协调充电或所谓的电动汽车智能充电被认为是改善协同作用的一种有前途的解决方案。本论文研究了在应用电动汽车智能充电方案的情况下住宅电动汽车充电和光伏发电之间的协同作用。本论文的研究是在单个建筑、社区和配电网层面进行的。为降低住宅建筑净负荷(负荷 - 发电)变化,我们开发并模拟了智能充电模型。降低净负荷变化意味着既要降低峰值负荷,又要增加本地发电的自耗,这也将提高电网性能。我们还评估了 PV-EV 组合电网承载能力。结果表明,智能充电方案可以提高 PV 自耗,并降低配备 EV 和 PV 系统的建筑物的峰值负荷。PV 自耗可提高至 8.7%,峰值负荷可降低至 50%。自耗改善有限,原因是中午太阳能达到峰值时家中 EV 可用性较低。结果还表明,EV 智能充电可以提高电网性能,例如减少电网损耗和电压违规发生。智能充电方案显著提高了 EV 的电网承载能力,但对 PV 的电网承载能力略有提高。还可以得出结论,在住宅配电网中,光伏和电动汽车承载能力之间存在轻微的正相关性。关键词:电动汽车、智能充电、光伏、住宅建筑、用电量、自耗、配电网、承载能力
专员委员会是对与医疗保健相关的机构进行投票的机构。我正在与医疗保健计划有关的最新决议。尽管医疗计划是自保险的,但委员会通常与计划管理员签订了三年合同,并且该合同典型的合同允许一份三年的延期,该公司也将由专员的BOA RD投票。 /\ s tt aghed决议和合同,指定与计划相关的(例如Copays和Coving Services)的指定不受投票e的约束。这些决定是由Emp lo Yees做出的,他们最终与由涵盖实体的雇员和工会代表组成的联合实体委员会以及联合的实体委员会一起将其回复给Co Mmi sssioners。委员会确实对某些覆盖范围的变化进行了投票,在这种情况下,要添加精确医学,可以进行遗憾,生育/产妇解决方案s,但是,这些覆盖范围的变化并没有使雇员和雇主的计划成本的变化重新弥补,在2024年中,在2024年保持不变,然后才能努力工作。尽管增加了2024年的添加率,但是当Bene Fit S and Co ns ul Tant设置了2024年的合成率时,可能已提前考虑到The,或者可能会在202 5中更改COMPOS IT速率。在建议他们的主持人蚂蚁时,由本e fit做出决定。它可以根据我们将作为计划的构成所提供和利用的se rv ices来改变年度。顾问根据预计的Hea Lth Pl提供的全部服务补充的预期成本建议,由顾问提出了速率。
4。Ansaldo E,Slayden LC,Ching KL,Koch MA,Wolf NK,Plichta DR等。akkermansia粘膜粘膜在稳态期间诱导肠道适应性免疫反应。科学。2019; 364(6446):1179-1184。 5。 Sefik E,Geva-Zatorsky N,Oh S,Konnikova L,Zemmour D,McGuire AM等。 个体肠道共生体诱导RORγ +调节性T细胞的不同种群。 科学。 2015; 349(6251):993-997。 6。 Lathrop SK,Bloom SM,Rao SM,Nutsch K,Lio CW,Santacruz N等。 结肠共生微生物群对免疫系统的外围教育。 自然。 2011; 478(7368):250-254。 7。 Yang Y,Torchinsky MB,Gobert M,Xiong H,Xu M,Linehan JL等。 肠道Th17细胞对共生细菌抗原的聚焦特异性。 自然。 2014; 510(7503):152-156。 8。 Xu M,Pokrovskii M,Ding Y,Yi R,Au C,Harrison OJ等。 c- MAF依赖性调节性T细胞介导对肠道病原体的免疫耐受性。 自然。 2018; 554(7692):373-377。 9。 Chai JN,Peng Y,Rengarajan S,Solomon BD,AI TL,Shen Z等。 螺旋杆菌是体内平衡和炎症中结肠T细胞反应的有效驱动因素。 SCI免疫。 2017; 2(13):EAAL5068。 10。 Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。2019; 364(6446):1179-1184。5。Sefik E,Geva-Zatorsky N,Oh S,Konnikova L,Zemmour D,McGuire AM等。个体肠道共生体诱导RORγ +调节性T细胞的不同种群。科学。2015; 349(6251):993-997。 6。 Lathrop SK,Bloom SM,Rao SM,Nutsch K,Lio CW,Santacruz N等。 结肠共生微生物群对免疫系统的外围教育。 自然。 2011; 478(7368):250-254。 7。 Yang Y,Torchinsky MB,Gobert M,Xiong H,Xu M,Linehan JL等。 肠道Th17细胞对共生细菌抗原的聚焦特异性。 自然。 2014; 510(7503):152-156。 8。 Xu M,Pokrovskii M,Ding Y,Yi R,Au C,Harrison OJ等。 c- MAF依赖性调节性T细胞介导对肠道病原体的免疫耐受性。 自然。 2018; 554(7692):373-377。 9。 Chai JN,Peng Y,Rengarajan S,Solomon BD,AI TL,Shen Z等。 螺旋杆菌是体内平衡和炎症中结肠T细胞反应的有效驱动因素。 SCI免疫。 2017; 2(13):EAAL5068。 10。 Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。2015; 349(6251):993-997。6。Lathrop SK,Bloom SM,Rao SM,Nutsch K,Lio CW,Santacruz N等。结肠共生微生物群对免疫系统的外围教育。自然。2011; 478(7368):250-254。7。Yang Y,Torchinsky MB,Gobert M,Xiong H,Xu M,Linehan JL等。 肠道Th17细胞对共生细菌抗原的聚焦特异性。 自然。 2014; 510(7503):152-156。 8。 Xu M,Pokrovskii M,Ding Y,Yi R,Au C,Harrison OJ等。 c- MAF依赖性调节性T细胞介导对肠道病原体的免疫耐受性。 自然。 2018; 554(7692):373-377。 9。 Chai JN,Peng Y,Rengarajan S,Solomon BD,AI TL,Shen Z等。 螺旋杆菌是体内平衡和炎症中结肠T细胞反应的有效驱动因素。 SCI免疫。 2017; 2(13):EAAL5068。 10。 Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。Yang Y,Torchinsky MB,Gobert M,Xiong H,Xu M,Linehan JL等。肠道Th17细胞对共生细菌抗原的聚焦特异性。自然。2014; 510(7503):152-156。 8。 Xu M,Pokrovskii M,Ding Y,Yi R,Au C,Harrison OJ等。 c- MAF依赖性调节性T细胞介导对肠道病原体的免疫耐受性。 自然。 2018; 554(7692):373-377。 9。 Chai JN,Peng Y,Rengarajan S,Solomon BD,AI TL,Shen Z等。 螺旋杆菌是体内平衡和炎症中结肠T细胞反应的有效驱动因素。 SCI免疫。 2017; 2(13):EAAL5068。 10。 Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。2014; 510(7503):152-156。8。Xu M,Pokrovskii M,Ding Y,Yi R,Au C,Harrison OJ等。c- MAF依赖性调节性T细胞介导对肠道病原体的免疫耐受性。自然。2018; 554(7692):373-377。 9。 Chai JN,Peng Y,Rengarajan S,Solomon BD,AI TL,Shen Z等。 螺旋杆菌是体内平衡和炎症中结肠T细胞反应的有效驱动因素。 SCI免疫。 2017; 2(13):EAAL5068。 10。 Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。2018; 554(7692):373-377。9。Chai JN,Peng Y,Rengarajan S,Solomon BD,AI TL,Shen Z等。螺旋杆菌是体内平衡和炎症中结肠T细胞反应的有效驱动因素。SCI免疫。 2017; 2(13):EAAL5068。 10。 Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。SCI免疫。2017; 2(13):EAAL5068。 10。 Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。2017; 2(13):EAAL5068。10。Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。通过分段丝状细菌诱导肠道Th17细胞。单元格。2009; 139(3):485-498。 11。2009; 139(3):485-498。11。Bilate AM,Bousbaine D,Mesin L,Agudelo M,Leube J,Kratzert A等。来自克隆T细胞前体的调节和上皮内T细胞的组织特异性出现。SCI免疫。 2016; 1(2):EAAF7471。 12。 Bilate Am,Lafaille JJ。 在免疫耐受性中诱导的CD4+ FOXP3+调节T细胞。 Annu Rev Immunol。 2012; 30:733-758。 13。 页岩M,Schiering C,Powrie F.肠炎中的CD 4+ T细胞子集。 Immunol Rev. 2013; 252(1):164-182。 14。 Sujino T,伦敦M,Hoytema van Konijnenburg DP,Rendon T,Buch T,Silva HM等。 调节和上皮内CD4+ T细胞的组织适应控制肠道炎症。 科学。 2016; 352(6293):1581-1586。 15。 Reis BS,Rogoz A,Costa-Pinto FA,Taniuchi I,MucidaD。转录因子Runx3和ThPOK的相互表达调节肠道CD4+ T细胞免疫。 nat免疫。 2013; 14(3):271-280。SCI免疫。2016; 1(2):EAAF7471。 12。 Bilate Am,Lafaille JJ。 在免疫耐受性中诱导的CD4+ FOXP3+调节T细胞。 Annu Rev Immunol。 2012; 30:733-758。 13。 页岩M,Schiering C,Powrie F.肠炎中的CD 4+ T细胞子集。 Immunol Rev. 2013; 252(1):164-182。 14。 Sujino T,伦敦M,Hoytema van Konijnenburg DP,Rendon T,Buch T,Silva HM等。 调节和上皮内CD4+ T细胞的组织适应控制肠道炎症。 科学。 2016; 352(6293):1581-1586。 15。 Reis BS,Rogoz A,Costa-Pinto FA,Taniuchi I,MucidaD。转录因子Runx3和ThPOK的相互表达调节肠道CD4+ T细胞免疫。 nat免疫。 2013; 14(3):271-280。2016; 1(2):EAAF7471。12。Bilate Am,Lafaille JJ。在免疫耐受性中诱导的CD4+ FOXP3+调节T细胞。Annu Rev Immunol。 2012; 30:733-758。 13。 页岩M,Schiering C,Powrie F.肠炎中的CD 4+ T细胞子集。 Immunol Rev. 2013; 252(1):164-182。 14。 Sujino T,伦敦M,Hoytema van Konijnenburg DP,Rendon T,Buch T,Silva HM等。 调节和上皮内CD4+ T细胞的组织适应控制肠道炎症。 科学。 2016; 352(6293):1581-1586。 15。 Reis BS,Rogoz A,Costa-Pinto FA,Taniuchi I,MucidaD。转录因子Runx3和ThPOK的相互表达调节肠道CD4+ T细胞免疫。 nat免疫。 2013; 14(3):271-280。Annu Rev Immunol。2012; 30:733-758。 13。 页岩M,Schiering C,Powrie F.肠炎中的CD 4+ T细胞子集。 Immunol Rev. 2013; 252(1):164-182。 14。 Sujino T,伦敦M,Hoytema van Konijnenburg DP,Rendon T,Buch T,Silva HM等。 调节和上皮内CD4+ T细胞的组织适应控制肠道炎症。 科学。 2016; 352(6293):1581-1586。 15。 Reis BS,Rogoz A,Costa-Pinto FA,Taniuchi I,MucidaD。转录因子Runx3和ThPOK的相互表达调节肠道CD4+ T细胞免疫。 nat免疫。 2013; 14(3):271-280。2012; 30:733-758。13。页岩M,Schiering C,Powrie F.肠炎中的CD 4+ T细胞子集。Immunol Rev.2013; 252(1):164-182。 14。 Sujino T,伦敦M,Hoytema van Konijnenburg DP,Rendon T,Buch T,Silva HM等。 调节和上皮内CD4+ T细胞的组织适应控制肠道炎症。 科学。 2016; 352(6293):1581-1586。 15。 Reis BS,Rogoz A,Costa-Pinto FA,Taniuchi I,MucidaD。转录因子Runx3和ThPOK的相互表达调节肠道CD4+ T细胞免疫。 nat免疫。 2013; 14(3):271-280。2013; 252(1):164-182。14。Sujino T,伦敦M,Hoytema van Konijnenburg DP,Rendon T,Buch T,Silva HM等。调节和上皮内CD4+ T细胞的组织适应控制肠道炎症。科学。2016; 352(6293):1581-1586。 15。 Reis BS,Rogoz A,Costa-Pinto FA,Taniuchi I,MucidaD。转录因子Runx3和ThPOK的相互表达调节肠道CD4+ T细胞免疫。 nat免疫。 2013; 14(3):271-280。2016; 352(6293):1581-1586。15。Reis BS,Rogoz A,Costa-Pinto FA,Taniuchi I,MucidaD。转录因子Runx3和ThPOK的相互表达调节肠道CD4+ T细胞免疫。nat免疫。2013; 14(3):271-280。2013; 14(3):271-280。
John Jahanshad,Andoh D,Georgia Antoniou,Apkar Vania Apkarian,Laurco-Hino-Hininal IS。 Martin Domin,Natalia Egorova-Brumley DN,James Fachon,OO,Jodi M. Gilman。 Marco L. Loggia和BBB,Marco L.Loggia和BBB,Marco L.Loggia,Marco L. Millard的评估,Susanne,Samantha K. Millard,Rajeny A.公园,小龙格GGG,耶稣·普约尔P,琳达·罗博波,施特林·桑,德林·孙,MMM,A。AnnaWoodbury ckk,www,www,Fadel XXX,Ravi R. Bhatt C,Christopher R.K. Paul M. Thompson C