▪ 发电厂扩建和恢复计划(12 个地点的 10 个不同发电厂,1,500 MWel),沙特阿拉伯 ▪ 科泽尼采发电厂(1,075 MWel),波兰 ▪ 奥斯特罗莱卡发电厂(1,000 MWel),波兰 ▪ 亚沃日诺发电厂(910 MWel),波兰 ▪ Shuqaiq II 独立水电项目(850 MWel),沙特阿拉伯 ▪ Qua Iboe 电力项目(500 MWel),尼日利亚 ▪ Łagisza 发电厂(高达 500 MWel,300 MWth),波兰 ▪ Żerań 热电联产厂(450 MWel,250 MWth),波兰 ▪ 库尔纳发电厂(330 MWel),孟加拉国 ▪ 加尔达巴尼联合循环发电厂(230 MWel),格鲁吉亚 ▪ Zofiówka 热电联产厂(80 MWel, 115 MWth),波兰 ▪ 扎布热热电联产电厂(75 MWel,145 MWth),波兰 ▪ 琴斯托霍瓦热电联产电厂(65 MWel,120 MWth),波兰 ▪ Bielsko-Biała 热电联产电厂(50 MWel,106 MWth),波兰 ▪ Grossenkneten 热电联产电厂(30 MWel),德国
电动汽车 (EV) 有潜力降低交通运输部门的碳排放,并为实现全球净零排放目标做出贡献。然而,为了实现可持续的脱碳,电动汽车的电网到车辆 (G2V) 运行所需的电力应来自无碳或低碳发电源。虽然人们已经广泛探索了可再生能源 (RES) 在电动汽车 G2V 过程中的采用,但热电联产 (CHP) 技术仍未得到充分研究。因此,本文部署了协调的天然气和燃料电池热电联产技术以及 RES 和电池储能系统 (BESS),以促进电动汽车的 G2V 和车辆到电网 (V2G) 运行。虽然 BESS 支持 V2G 运行并储存来自 CHP 和 RES 的多余电力,但 CHP 的副产品热量可用于家庭和工业设施的供暖。此外,为了最大限度地提高环境和经济效益,CHP 技术采用混合电热负荷策略设计,使系统能够在遵循电负荷策略和遵循热负荷策略之间自主切换。使用三个不同的案例研究 (CS) 测试了所提出的优化问题,以在随机框架内最小化微电网 (MG) 的运营成本和二氧化碳 (CO 2 ) 排放量,同时考虑 RES 发电、负荷消耗和 EV 充电/放电周期的行为模式作为不确定参数。第一个 CS 仅使用 CHP 技术测试所提出的算法。其次,使用 CHP 技术和 RES 检查该算法。最后,添加 BESS 以支持和分析电动汽车的 V2G 运行对 MG 的影响。此外,还研究了生命周期评估以分析分布式发电的二氧化碳排放量。结果显示,第一、第二和第三个 CS 的运营成本分别降低了 32.22%、44.49% 和 47.20%。同时,各相应 CS 的 CO 2 排放量分别下降了 29.13%、47.13% 和 47.90%。这些结果证明了将热电联产与可再生能源相结合以促进 G2V 和 V2G 运营以实现运输部门脱碳的经济和环境效益。
加利福尼亚大学圣地亚哥校园的房屋,可容纳75,000多名学生,教职员工和教职员工的1200英亩和1200万平方英尺的设施。为了满足校园的电气和热能需求(包括办公室,实验室,教室和其他建筑空间),UCSD于2001年开始运行一个组合的热量和电源(CHP)系统。2010年,环境保护署在UCSD授予了Energy Star CHP奖,该奖项是其高效,低排放的CHP工厂,可提供校园年度电力需求的72%。UCSD发起了一项计划,在2011年建立世界上最先进的微电网,以在2025年之前创建一个碳中和校园。
临床健康心理学(CHP)很高兴能招募许多全日制永久博士心理学家职位,这与政府的大量投资有关,以扩大曼尼托巴省卫生系统的心理护理。CHP是在省级卫生管理局的中央组织的,共享健康,并负责整个曼尼托巴省的心理服务; CHP还是曼尼托巴大学Max Rady医学院的学术系。CHP心理学家位于医院,卫生中心和初级保健诊所,从年轻到老年人提供临床护理,以提供广泛的心理健康,发育,急性和慢性病。曼尼托巴省卫生系统的心理学家与我们的医师同事一起任命医务人员的任命,并与医疗,护理和盟友卫生专业人员合作良好,以提供创新有效的护理。CHP心理学家定期相互联系,无论是基于温尼伯还是在农村或北部卫生地区,并具有尊重和关怀的专业实践社区。我们提供有竞争力的工资,全面的福利,灵活的开始日期,搬迁支持,临床监督,直到获得独立实践,持续的专业发展,专业许可证的报销;通过综合临床/学术角色来监督心理居民,临床教学和临床研究的机会。
图 3-6。美国平均电池存储历史 O&M 成本数据($/kW-yr-DC,2022 年 $)按客户部门划分 ............................................................................................................................. 37 图 3-7。固定式储能电池化学市场份额及预测所有部门,2015-2030 年 ................................................................................................................................... 46 图 4-1。美国平均住宅分布式风电项目成本数据(2015-2022 年,2022 年 $) ...................................................................................................................... 52 图 4-2。美国平均小型商业分布式风电项目成本数据(2012-2022 年,2022 年 $) .................................................................................................................................... 53 图 4-3。美国平均中型商业分布式风电项目成本数据(2012-2022,2022 年美元) ............................................................................................................................................. 53 图 4-4。美国平均大型商业分布式风电项目成本数据(2012-2022,2022 年美元) ............................................................................................................................. 54 图 4-5。2013 年美国本土的年度日平均互补性(以皮尔逊相关系数表示) ............................................................................. 56 图 5-1。美国平均家用燃料电池系统资本成本(美元/千瓦-交流电,2022 年美元) ................................................................................................................................................ 61 图 5-2。美国商用燃料电池系统平均资本成本(美元/千瓦时-AC,2022 年美元) ........................ 62 图 5-3。美国家用燃料电池系统平均 O&M 成本(美元/千瓦时,2022 年美元) ........................ 63 图 5-4。美国商用燃料电池系统平均 O&M 成本(美元/千瓦时,2022 年美元) ........................ 63 图 5-5。太阳能光伏 + 燃料电池混合能源系统图 ............................................................................. 65 图 5-6。使用 M2FCT 开发的催化剂的膜电极组件性能测试结束进展,2021-2023 年 ............................................................................................................. 67 图 6-1。美国年度商业热电联产安装量(2012-2022 年) .............................................................. 70 图 6-2。美国年度工业热电联产安装量(2012-2022 年) .............................................................. 71 图 6-3。美国平均商业热电联产系统资本成本(美元/千瓦时,2022 美元).................................... 80 图 6-4。美国平均工业热电联产系统资本成本(美元/千瓦时,2022 美元)........................ 81 图 6-5。美国平均商业热电联产系统运营和维护成本(美元/千瓦时,2022 美元)........................ 82 图 6-6。美国平均工业热电联产系统运营和维护成本(美元/千瓦时,2022 美元)........................ 82 图 7-1。按行业部门按数量和兆瓦-交流划分的热电联产系统数量和总容量... 89 图 7-2。制造业热电联产系统数量和总容量(按数量和 MW-AC 划分)(按 3 位数 NAICS)............................................................................................................. 90 图 7-3。热电联产系统数量和总容量:按数量和 MW-AC 划分的前 10 个五位数 NAICS 行业............................................................................................................. 91 图 7-4。电池存储的年度和累计市场预测 ............................................................................. 96
生物质联合热量和功率(CHP)技术最近引起了极大的兴趣。这项技术与间歇性的PV资源表现出协同兼容性,为农村地区提供可靠且环境可持续的能源提供,有效地满足了其对电力和供暖的要求[7,8]。参考[9]构建了一个具有生物量,PV和其他可再生能源的农村电力热能能源系统(IES),结果表明,生物质CHP的利用提高了生物量利用率的效率,并提高了IES的整体获利能力。参考[10]考虑了多个能量输入,构建了生物质CHP的联合操作优化模型,旨在整合电力和热供应系统的经济学和能源效率。在[11]中,开发了公园一级多能耦合系统中的能量调度策略。该策略涵盖了生物质CHP的整合,从而降低了公园内的碳排放强度。同时,它旨在优化公园的经济功能并扩大可再生能源消耗的整合。这些先前的研究为生物质CHP系统的实际应用铺平了道路。然而,值得注意的是,这些研究中研究的加热系统在“由热量”范式确定的“功率”中运行,这需要在热量输出和负载之间持续平衡。此操作模式限制了能源提供系统的能量利用效率和灵活性。
对每个 CHP 单元进行评估,选择“无销售”选项,即不将多余的电力卖回给公用事业公司;选择“销售”选项,即将电力卖回给电力公司。选择 0.055 美元/千瓦时的销售价格作为可能的批发价。与西北能源的讨论表明,他们必须进行一项研究,以确定购电协议 (PPA) 内的电力回购价格。“无销售”选项还有进一步的惩罚:由于没有 PPA,任何电力都不允许回流到电网,因此需要在实际校园电力需求和 CHP 电厂的发电量之间提供缓冲。CTA 认为这个缓冲应该大约为 75 千瓦,以便 CHP 电厂的负荷控制能够对大型设备关闭时可能出现的校园瞬时电力减少做出反应。75 kW 缓冲器减少了热电联产电厂的潜在发电量,以防止电力回流到电网。
摘要。通过整合电力和热力基础设施,可以有效地管理可再生能源发电造成的电网拥堵,后者以大型区域供热 (DH) 网络为代表,通常由大型热电联产 (CHP) 电厂供电。热电联产电厂可以通过调整热能和电能之间的比率,在电力市场上出售电力,从而进一步提高区域供热多公用事业的利润率。后者只适用于某些热电联产电厂,这些电厂允许将两种商品的发电分离,即由两个独立变量(自由度)提供的发电,或通过将它们与热能存储和电转热 (P2H) 单元集成。因此,热电联产单元可以帮助电网的拥堵管理。引入了一个详细的混合整数线性规划 (MILP) 优化模型,用于解决综合电力和热力基础设施的网络约束单元承诺问题。所开发的模型包含热电联产单元(即热能和电能)的有用效应的详细描述,这些效应是一两个独立变量的函数。无损直流流近似模拟电力传输网络。区域供热模型包括使用燃气锅炉、电锅炉和热能储存。对 IEEE 24 总线系统进行的研究强调了全面分析多能源系统的重要性,以利用电力和热力部门联合运行带来的灵活性并管理电网拥堵。