这项研究使用Silvaco-Atlas软件背对背设计和模拟了CIGS/CIGS。我们认为CIGS吸收层厚度和子细胞是关键参数,以优化CIGS/CIGS串联太阳能电池的性能。该研究比较研究了不同电极金属的影响,例如钼,铝,钛和银对效率。最佳CIGS/CIGS串联太阳能电池配置的电参数为15.65 mA/cm²的短路电流密度(JSC),开路电压(VOC)为1.86 V,填充因子(FF),86.04%的填充因子(FF),为86.04%,转化效率(η)为27.112%。与获得最大转化效率相对应的顶部和底部细胞的最佳吸收层厚度分别为0.17和6.3μm。相反,CDS层的最佳厚度为0.04 µm。银在几种金属之间连接层方面的性能最佳。结果可用于开发低成本和高效率太阳能电池。
太阳能电池是一种光伏装置,它通过吸收半导体中的光生载流子,将太阳能直接转化为电流。太阳能电池主要涉及三个过程:吸收光子产生电荷载流子、分离载流子和收集载流子。半导体材料通常吸收能量大于其带隙的光子。被吸收的光子激发电子从吸收材料中的价带移动到导带,从而产生电子-空穴对。产生的电荷载流子对要么重新组合,要么分离然后收集。吸收的光子取决于吸收材料的厚度和吸收系数。太阳能电池的关键部分是pn结的形成,pn结由两种连接在一起的半导体材料组成,其中一种是n型掺杂的,另一种是p型掺杂的。在CIGS太阳能电池中,各种不同的半导体材料用于形成pn结,因此这种结构称为异质结。使用异质结可以为电池提供宽带隙窗口层,从而减少表面复合。价带和导带
在众多可再生能源技术中,铜铟镓硒(CIGS)、碲化镉(CdTe)、有机和钙钛矿太阳能电池是技术成熟且经过现场验证的技术。[1–6] 这些技术用于各种场合,如光伏发电厂、光伏建筑一体化、室内能源、电动汽车和小型移动电源。[7–11] 自20世纪50年代初以来,c-Si一直是全球光伏产业的主流产品。[12–14] c-Si太阳能电池的核心结构是在p(或n)型硅衬底上扩散n(或p)型发射极形成的pn同质结。 [15] 在 c-Si 太阳能电池中,这种 pn 同质结至今仍在使用,并且可以通过众所周知的钝化发射极和背面电池及相关架构(例如钝化发射极局部扩散电池和钝化发射极背面全扩散电池)实现约 25% 的高功率转换效率 (PCE)。[16–18] 与 c-Si 太阳能电池不同,CIGS 太阳能电池器件基于 p 型 CIGS 和 n 型 CdS 层之间形成的 pn 异质结。[19–22]
摘要。在这项工作中,我们通过使用辅助设计(TCAD SILVACO)软件对CDS/CUIGASE 2(CIGS)薄太阳能电池进行了两维数值分析的研究研究。它们的结构由配置中的薄CIGS太阳能电池组成:Zno(200 nm)/CDS(50 nm)/CIGS(350 nm)/mo。然后将ZnO用于电导氧化导电细胞的透明前部。用于后接触,使用钼(MO)。CD窗口的层和CIGS吸收器的形状是N-P半导体异质结。通过应用模型中多晶CD和CIGS材料和CIGS材料和CIGS/CDS接口的晶粒关节中产生的缺陷来评估细胞的性能,并且已经对TCAD模拟中使用的物理参数进行了校准以复制实验数据。在AM1.5照明条件下模拟J -V特性。已达到转换效率(η)20.10%,并且已经模拟了其他特征参数:开路电压(V OC)为0.68 V,电路电流密度(J SC)等于36.91 mA/cm 2,并且表格(FF)为0.80。模拟结果表明,CIGS层的摩尔分数x的最佳值约为0.31,对应于1.16 eV的间隙能,该结果与实验中发现的结果非常吻合。
低地球轨道上的卫星主要由光伏模块供电。随着新卫星概念对电力的需求不断增长,太阳能电池必须具有灵活性和超轻性,以降低发射成本。CIGS 薄膜太阳能技术是一种很有前途的候选技术,因为它可以在柔性基板上制造,并且具有高辐射硬度。另一方面,CIGS 的辐射性能较差,会导致高温,从而导致功率损失。CIGS 上的高辐射率涂层已有报道,但尚未解决其对热和电方面的影响。这里我们介绍了硅氧碳氮化物涂层的光学特性及其对用于 DLR 的 GoSolAr 动力帆任务的 CIGS 电池电气参数的影响。我们表明,单层涂层可以将辐射率从 0.3 显著提高到 0.72,同时将光谱损失降至最低,对底层 CIGS 电池的功能影响可忽略不计。我们模拟了涂层对轨道太阳能电池的热影响,并预测电池的最高温度将降低 30 摄氏度,从而显著提高功率。此外,涂层在 8 – 13 μ m 的大气窗口内的发射率为 0.87,使其成为地面太阳能电池非常好的被动辐射冷却器。这种低成本涂层可以替代玻璃,并且该工艺可以扩大到大型 CIGS 模块。该涂层还可以显著提高太阳能模块的功率质量比,从而降低太空应用的成本。
电气技术和工程教师,马来西亚马来西亚大学马来西亚大学,吉纳·贾亚(Hang tuah jaya)具有成本效益和高效的光伏应用的潜力,效率通常超过20%。但是,需要进一步改善细胞性能以降低生产成本。因此,本研究提出了通过修饰吸收层层厚度和组成的CIGS太阳能电池的超薄结构。SCAPS软件用于评估拟议设计的性能,例如开路电压(VOC),短路电流(JSC),填充因子(FF%)和转换效率(ŋ%)。结果表明,具有拟议的GNP和CGS吸收层的超薄太阳能电池是理想的,因为它们的较大ŋ%,25.33%。(2024年2月28日收到; 2024年5月20日接受)关键词:太阳能电池,超薄的CIGS太阳能电池,CGS,GNP,GNP,吸收层的厚度,Scaps。1。引言太阳能电池对于向更清洁,更可持续的能源过渡至关重要。由于地球群在气候变化和环境退化问题上挣扎,太阳能电池提供了一种发电的方法,而无需喷出温室气体或耗尽宝贵的资源[1]。可再生能源是一种潜在的解决方案,可能是全球电力供应的未来,以满足必要的需求,每年逐渐增加。吸收层是CIGS太阳能电池的关键组成部分。太阳能使用光伏技术转换为电能。太阳系中使用的常见半导体包括洁牙镉,丙烯酸铜,微晶硅,单晶硅和多晶硅硅[2]。例如,铜硅化铜(CIGS)是一种半导体材料,在太阳能电池技术领域中具有重要意义。CIGS表现出较高的转化效率,可以将阳光显着转化为电力。正在进行的研发工作着重于通过改善材料特性,设备架构和制造过程来提高CIGS太阳能电池的效率。这些进步有可能使CIGS技术在大规模采用方面更具吸引力。是直接吸收阳光并产生有助于发电的电荷(电子和孔)的层。吸收层的特性和特性在确定CIGS太阳能电池的整体性能和效率方面起着重要作用。CIGS太阳能电池中的缓冲液和前接触经常由硫化镉和氧化锌制成[4]。确定氧化物是否透明光的带隙比光的光子能量更重要,因为它包含发电所需的能量。氧化物不应根据这一含义吸收光。下一层(称为吸收层)由通常比喻为太阳能电池的“控制中心”的半导体材料组成。该层捕获光子和刺激电子的能力会导致传导带中电流,从而证实了这种效果[4]。因此,吸收层的半导体材料的选择与太阳能电池截面中存在的光子范围对齐。同时,back- *通讯作者:aziah83@gmail.com https://doi.org/10.15251/jor.2024.203.309
(AFRL)空军研究实验室(BMS)电池管理系统(BOL)生命开始(CFRPS)复合纤维增强板(CIGS)CU(CIGS)CU(CIGS)SE2 SE2(ga)SE2(cots)商业 - 商业 - 货架(EOL)遗产(EOL)终端(EPS)终端(EPS)电力系统(ESA)电气系统(ESA)欧洲空间(ESA)欧洲空间(GAN)nitride(GAN)nitriide(ka)niTriede(GRC)NASNY ny nyy n. (Li-ion) Lithium-ion (LiCF x ) Lithium carbon monofluoride (LiPo) Lithium polymer (LiSO 2 ) Lithium sulfur dioxide (LiSOCl 2 ) Lithium thionyl chloride (MIL) Military (QML) Qualified Manufacturers List (NiCd) Nickel-cadmium (NiH 2 ) Nickel-hydrogen (OPV) Organic Photovoltaic (奥斯卡)基于碳材料(PCB)印刷电路板(PEASSS)的光传感器(sp)特定功率(交换)尺寸,重量和功率(TPV)热伏oltaic(TR)热辐射(TRL)技术准备水平(WH kg -1)瓦特小时每公斤瓦特小时
警告:由于该逆变器是非分离的,因此只有三种类型的PV模块是可以接受的:具有A级和CIGS模块的单晶和聚晶体。要避免出现任何故障,请勿将可能电流泄漏的任何PV模块连接到逆变器。例如,接地的PV模块会导致逆变器的电流泄漏。使用CIGS模块时,请确保不要接地。注意:需要使用带有电涌保护的PV接线盒。否则,当光伏模块上发生雷电时,它将造成逆变器损坏。
(AFRL)空军研究实验室(BMS)电池管理系统(BOL)生命开始(CFRPS)复合纤维增强板(CIGS)CU(CIGS)CU(CIGS)SE2 SE2(ga)SE2(cots)商业 - 商业 - 货架(EOL)遗产(EOL)终端(EPS)终端(EPS)电力系统(ESA)电气系统(ESA)欧洲空间(ESA)欧洲空间(GAN)nitride(GAN)nitriide(ka)niTriede(GRC)NASNY ny nyy n. (Li-ion) Lithium-ion (LiCF x ) Lithium carbon monofluoride (LiPo) Lithium polymer (LiSO 2 ) Lithium sulfur dioxide (LiSOCl 2 ) Lithium thionyl chloride (MIL) Military (QML) Qualified Manufacturers List (NiCd) Nickel-cadmium (NiH 2 ) Nickel-hydrogen (OPV) Organic Photovoltaic (奥斯卡)基于碳材料(PCB)印刷电路板(PEASSS)的光传感器(sp)特定功率(交换)尺寸,重量和功率(TPV)热伏oltaic(TR)热辐射(TRL)技术准备水平(WH kg -1)瓦特小时每公斤瓦特小时
摘要:在 Ag/AlO x 堆栈上生长了 550 nm 的超薄 Cu(In,Ga)Se 2 (CIGS) 吸收层。堆栈的添加使太阳能电池的填充因子、开路电压和短路电流密度得到改善。效率从 7% 提高到近 12%。光致发光 (PL) 和时间分辨 PL 得到改善,这归因于 AlO x 的钝化特性。由于光散射和表面粗糙度增加,测量到的电流增加了近 2 mA/cm 2。利用飞行时间-二次离子质谱法测量了元素分布。发现 Ag 贯穿整个 CIGS 层。Mo 背面的二次电子显微镜图像显示了 Ag/AlO x 堆栈的残留物,这通过能量色散 X 射线光谱测量得到了证实。这被认为是导致表面粗糙度和散射特性增加的原因。在正面,可以看到带有 Ag/AlO x 背接触的电池有大片污渍。因此,在裸露的吸收层上应用了氨硫化物蚀刻步骤,将效率进一步提高到 11.7%。它显示了在背面使用 Ag/AlO x 堆栈来改善超薄 CIGS 太阳能电池的电气和光学特性的潜力。