AAS 非裔美国人研究 ABAS 农业综合企业和农业科学 ACA 学业成功计划 ACSI 精算科学 ACTG 会计 ADV 广告 AERO 航空航天 ANTH 人类学 ARAB 阿拉伯语 ART 艺术 ASTL 教学与学习高级研究 ASTR 天文学 ATHC 运动教练 ATHT 运动训练 BCEN 商务沟通与创业 BIOL 生物学 BLAW 商法 BUAD 工商管理 CDFS 儿童发展与家庭研究 CDIS 交流障碍 CHEM 化学 CHIN 中文 CIM 混凝土工业管理 CJA 刑事司法管理 CMT 建筑管理技术 COED 合作教育 COMM 交流(演讲) CSCI 计算机科学 DANC 舞蹈 DYST 阅读障碍研究 ECON 经济学 ELED 基础教育 EMC 电子媒体通信 ENGL 英语 EST 环境科学与技术 ET 工程技术 EXL 体验式与服务式学习 EXSC 运动科学 FCSE 家庭与消费者科学教育 FIN 金融 FL 外语 FOED 教育基础 FREN 法语 GEOG 地理 GEOL 地质学GERM 德语 GERO 老年学 GRAF 媒体设计/图形 GS 全球研究 HEBR 希伯来语 HHP 健康与人类表现 HIST 历史 HLTH 健康 HSC 人文科学 HUM 人文学科 IDES 室内设计 IED 工业教育 IMIC 跨学科微分析和成像中心 INFS 计算机信息系统 ITAL 意大利语
英语,如果您想用另一种烤箱语言通知您,请联系我们。kīspinnitawihnēnīyīyjihk存在pwāsinān。cretcreę'e'e'kıt给你。tıwegoodıNew,Gos'o Gonede。dëneSųłıné被抛出了。ChipewyanEdı是一个无法做到的人。SouthSlaveyınınıre,是ır,ırandé'k{d d d d d d d d d d d d d d d d d d d d d d d d ddúle。 北奴隶吉(Slavey Jii),您要去Yinohthan,您要去。 搅拌uvani并照亮Quequaqluta不同。 无效的随后受试者代替天气代替物质。 ᐅᕙᑦဂᓐᓐᓐဦ ᐅᕙᑦဂᓐᓐᓐဦ inuk所有hapkua qqat Qualty inuinnaqtun,uvap和十二t。 土著人:867-xxxxxxe ext。 xxxxxSouthSlaveyınınıre,是ır,ırandé'k{d d d d d d d d d d d d d d d d d d d d d d d d ddúle。北奴隶吉(Slavey Jii),您要去Yinohthan,您要去。搅拌uvani并照亮Quequaqluta不同。无效的随后受试者代替天气代替物质。 ᐅᕙᑦဂᓐᓐᓐဦ ᐅᕙᑦဂᓐᓐᓐဦinuk所有hapkua qqat Qualty inuinnaqtun,uvap和十二t。土著人:867-xxxxxxe ext。xxxxx
近年来,半导体、电子、光学、MEMS、生物医药等诸多领域对复杂形状的三维结构的需求日益增加。迄今为止,大多数微结构制造工艺源自半导体工艺,例如硅晶片的薄膜加工和厚膜加工1-3。这些过程不可避免地需要曝光过程。曝光工艺由于需要使用特殊的设备,成本较高,并且在材料方面也受到很多限制。因此,不使用曝光工艺的微结构制造技术的研究正在积极开展。代表性例子包括微加工和微电火花加工 (microEDM)1,4 等机械方法。特别是随着相关产业的发展,具有三维形状的微型齿轮零件的需求量也日益增大,而实现此类零件的批量生产是实现工业化的必要条件。通过使用模具的注塑工艺,可以大规模生产微型齿轮部件。注射成型根据成型材料不同分为塑料注射成型和粉末注射成型,而粉末注射成型又根据所用粉末的种类分为MIM(金属注射成型)和CIM(陶瓷注射成型)。目前,塑料齿轮一般采用塑料注塑工艺进行量产,但众所周知的事实是,采用塑料材料制造的微型齿轮零件在刚性和耐久性方面存在着极限。因此,最近正在积极研究使用粉末金属注射成型工艺而非塑料来生产微型齿轮零件。本研究是通过金属注射成型工艺制造微型齿轮状产品的基础研究。目的是利用粉末注射模芯的微细电火花加工来制造微型齿轮状芯。
自主系统和自动化技术的快速发展继续彻底改变工业流程,与行业4.0的目标保持一致。本文提出了一个增强的自主移动机器人(AMR)系统,该系统旨在用于高级室内导航和勘探,这是基于CIM4.0 FixIT项目建立的基础工作的基础。这项研究的主要目的是利用ROS2的最新功能(机器人操作系统2)开发和实施强大的SLAM(同时本地化和映射)算法。这项研究的重点是使用ROS2框架中NAV2库的不同SLAM方法的全面比较。此分析涵盖了NAV2中可用的各种算法,包括基于网格的和拓扑映射方法,以及不同的定位技术,例如AMCL(自适应蒙特卡洛本地化)和EKF(扩展的Kalman滤波器)。比较根据映射准确性,计算效率和对动态环境的适应性评估这些方法。基于此分析,开发了先进的SLAM方法,从而整合了比较方法中最有效的元素。此自定义解决方案利用NAV2的模块化体系结构和ROS2改进的分布式计算功能,从而可以有效地进行路径计划和映射优化。使用ROS2实现整个系统,利用其增强的工具进行仿真,可视化和现实部署。严格的测试是在各种模拟环境中使用RVIZ和GAZEBO的更新版本进行的,这些版本现在与中间件更加紧密地集成在一起。这些模拟证明了机器人在主动探索,避免障碍和有效映射方面的提高功能,展示了这种方法的好处。最后,在CIM 4.0的经过精心控制的实验室环境中,进行了实际实验以评估创建的AMR系统的鲁棒性和性能。结果表明,AMR可以独立于各种情况,包括未知区域和动态障碍。
小黑麦的抽象冻结耐受性是导致其冬季坚韧性的主要特征。基因组区域的鉴定 - 定量性状基因座(QTL)和与冬季六倍体小黑细胞的冻结耐受性相关的分子标记 - 是这项研究的目的。为此,开发了一个新的遗传连锁图,该图是针对从“ hewo”×'magnat'f 1混合体衍生而来的92个双倍线的人口。在两个冬季,将这些线条与父母一起经过三次冻结耐受性测试。在自然秋季/冬季条件下生长和冷硬化,然后在受控条件下冻结。冻结耐受性被评估为植物回收(REC),冻结后的叶子和叶绿素荧光参数(JIP)的电解质泄漏(EL)。使用复合间隔映射(CIM)和单个标记分析(SMA)鉴定出几个荧光参数,电解质泄漏以及幸存植物百分比的三个一致QTL。第一个基因座QFR.HM-7A.1解释了冻结后电解质泄漏和植物恢复的9%。在4R和5R染色体上发现了两个QTL,解释了植物恢复中多达12%的变异,并通过选定的叶绿素荧光参数共享。最后,用于叶绿素荧光参数检测到主要基因座QCHL.HM-5A.1,该参数解释了表型变异的19.6%。此外,我们的结果证实了JIP测试是评估在不稳定的冬季环境下冻结耐受性的宝贵工具。在铬囊7a.1、4R和5R上共同存在的QTL清楚地表明,植物生存的生理和遗传关系在冷冻后,具有维持光系统II的最佳光化学活性和保存细胞膜完整性的能力。所鉴定的QTL中的基因包括编码BTR1样蛋白,跨膜螺旋蛋白(如钾通道)的跨膜螺旋蛋白和磷酸酯水解酶响应渗透胁迫以及参与基因表达调节的蛋白质的磷酸酯水解酶。
历史上,“整体柱时代”始于 20 世纪 90 年代 [ 1 ],当时开发了基于聚(甲基丙烯酸缩水甘油酯-共-乙烯二甲基丙烯酸酯)(聚(GMA-co-EDMA)[ 2 ] 和聚丙烯酰胺凝胶 [ 3 ] 整体柱作为蛋白质 HPLC 固定相。这些早期的努力启发了世界各地大量科学家进行创新研究,从而迅速推动了该领域的发展 [ 4 ]。今天,整体柱相由合成(聚甲基丙烯酸酯、聚丙烯酰胺和聚苯乙烯)[ 5-7 ]和天然(琼脂糖和纤维素)聚合物[ 8,9 ]或无机物质[ 10 ]获得。除此之外,在过去的十年中,有机-无机杂化整体柱也得到了广泛的发展[ 11,12 ]。在所有类型的整体柱中,刚性大孔聚合物整体柱是最大的类别之一,代表了不可膨胀的高度交联连续材料,含有互连大孔(d > 50 nm)[13-15]。20 世纪 90 年代末,使用刚性聚合物整体柱进行色谱分离的令人鼓舞的结果激发了整个行业的发展。20 多年来,BIA Separations(斯洛文尼亚卢布尔雅那)已将各种体积的刚性聚甲基丙烯酸酯和聚苯乙烯整体固定相制造为 CIM 盘、柱和管。从 2021 年开始,BIA Separations 成为 Sartorius(德国哥廷根)的一个部门。与基于颗粒的吸附剂中的扩散控制传质相比,由于大孔结构在流速增加的情况下具有高渗透性,整体柱可以实现对流控制的界面传质。高度交联的聚合物整体柱的机械和化学稳定性以及其易于制备是此类材料的其他积极特征 [16]。刚性聚合物整体柱可以在色谱柱或毛细管中原位合成,方法是在致孔溶剂存在下,通过热或光诱导聚合功能单体和交联单体 [ 17 , 18 ]。然后通过洗涤去除致孔剂,在聚合物结构中留下空隙,这些空隙是大孔。人们对聚合物整体柱产生兴趣的原因是它们在各种类型的分离和分析过程中可有效作为固定相,概述如下
本演示文稿为 GoviEx Uranium Inc.(以下简称“公司”或“GoviEx”)专有,未经公司事先同意,不得全部或部分复制、传播或引用。公司不承担核实这些材料中信息的责任,也不对此类信息的准确性或完整性作出任何陈述或保证。公司不承担更正或更新这些材料的义务。这些材料不包含评估任何交易或事项所需的所有信息,也不构成对任何交易或事项的建议。任何接收这些材料的人士均应对本文提及的事项进行独立分析。本演示文稿可能包含适用证券法所定义的前瞻性信息。本演示文稿中包含的除当前或历史事实陈述以外的所有信息和陈述均为前瞻性信息。此类声明和信息可能使用诸如“关于”、“大约”、“可能”、“相信”、“预期”、“将”、“打算”、“应该”、“计划”、“预测”、“潜在”、“项目”、“预期”、“估计”、“持续”或类似词语或其否定词或其他类似术语来识别。前瞻性陈述受此处以及公司向加拿大证券监管机构定期提交的其他文件中披露的具体因素的各种风险和不确定性的影响。本演示文稿中提供的信息必然是总结性的,可能不包含所有可用的重要信息。前瞻性陈述包括但不限于关于公司在赞比亚的矿山许可项目的预期开发时间和方法以及潜在生产进展以及在赞比亚进一步勘探进展的陈述;开始采矿后 4 个月内生产铀矿的潜力;预计的采矿方法、加工率、开采的总矿石量、开采的总吨数、剥离率、采矿顺序和矿产储量;可行性研究中未包括的 Muntanga 项目的未来潜力;Muntanga 项目将创造的预期就业岗位数量;Muntanga 项目预计的低运营支出;公司对 ESG 的持续承诺;未来任命债务顾问;继续与承购商合作;更新 ESIA 以完全符合 IFC 绩效标准,以及完成 RAP。前瞻性陈述基于一系列假设和估计,尽管管理层根据公司经营的业务和市场认为这些假设和估计是合理的,但本质上受重大运营、经济和竞争的不确定性和偶然性。前瞻性陈述基于以下假设:铀库存持续消耗,导致需求增加和铀价上涨,铀市场长期基本面保持强劲;公司对 ESG 的承诺,与公司项目所在司法管辖区的当地人接触的做法,从而降低相关项目的风险;公司项目所在司法管辖区的地方政府继续支持采矿业,特别是公司项目;公司优化项目以吸引新投资者的能力;公司获得必要融资的能力;以及一般而言,铀价格将保持足够高,推进公司项目的成本足够低,以使其能够以有利可图的方式实施其业务计划。可能导致实际事件和结果与公司预期存在重大差异的重要因素包括与铀价格市场波动相关的因素;公司无法获得额外融资、开发其矿产项目或获得其在公司经营所在司法管辖区开展活动所需的任何必要许可、同意或授权;公司合作伙伴拒绝支持其持续运营;以及公司无法成功或盈利地从其项目中生产矿产。此外,应结合本演示文稿中的信息,查看截至 2023 年 12 月 31 日的年度管理层讨论与分析报告以及截至 2023 年 12 月 31 日的年度信息表中“风险因素”部分中描述或提及的因素,这些内容可在 SEDAR+ 网站 www.sedarplus.ca 上查阅。尽管公司已尝试找出可能导致实际结果、业绩或成就与前瞻性陈述中所述内容存在重大差异的重要因素,但可能还有其他因素导致结果、业绩或成就不如预期、估计或预期。无法保证此类信息将被证明是准确的,也无法保证管理层对未来发展、情况或结果的期望或估计将会实现。由于这些风险和不确定性,这些前瞻性陈述中预测的结果或事件可能与实际结果或事件存在重大差异。因此,读者不应过分依赖前瞻性陈述。本演示文稿中的前瞻性陈述截至本演示文稿发布之日,并且公司否认有任何更新或修改此类信息的意图或义务,除非适用法律要求。本演示文稿中包含的与 Muntanga 项目有关的某些科学和技术信息来源于或摘录自公司 2025 年 1 月 23 日的新闻稿,该新闻稿披露了根据国家文书 43-101 - 矿产项目披露标准(“NI 43-101”)编制的可行性研究结果。可行性研究的技术报告由 Ukwazi Transaction Advisory (Pty) Ltd、SRK Consulting (UK) Limited 和 SGS Bateman (Pty) Ltd. 编制,以符合 NI 43-101,并将由 GoviEx 在 2025 年 1 月 XX 日新闻稿发布之日起 45 天内根据 SEDAR+(www.sedarplus.ca)上的个人资料提交。新闻稿中提及的所有科学和技术信息均已由 Jacobus Johannes Lotheringen 审查和批准。Lotheringen 先生拥有工学学士(采矿工程学位),是南非矿业冶金学会(SAIMM)会员(注册号 701237),是南非工程理事会(ECSA)注册的专业工程师(注册号 20030022),受雇于 Ukwazi Transaction Advisory (Pty) Ltd,担任首席采矿工程师,并且是根据 NI 43-101 铀矿床条款确定的独立合格人员。Lotheringen 先生已核实新闻稿中披露的数据。美国投资者注意:本演示文稿中的披露内容使用符合加拿大报告标准的矿产资源和矿产储量分类术语,除非另有说明,本演示文稿中包含的所有矿产资源和矿产储量估算均根据 NI 43-101 和其中引用的 CIM 标准编制。 NI 43-101 是由加拿大证券管理局制定的一项规则,旨在为发行人就矿产项目进行的所有科学和技术信息公开披露制定标准。SEC 现代化规则于 2019 年 2 月 25 日生效,取代了美国 1933 年证券法(经修订)行业指南 7 中包含的矿业注册人的历史披露要求。由于采用了 SEC 现代化规则,SEC 现在承认“已测量矿产资源”、“指示矿产资源”和“推断矿产资源”的估计值。此外,根据 NI 43-101 的要求,SEC 已修改其对“已探明矿产储量”和“可能矿产储量”的定义,使其与 CIM 标准下的相应定义“基本相似”。美国投资者请注意,虽然上述术语与相应的 CIM 标准“基本相似”,但 SEC 现代化规则和 CIM 标准下的定义存在差异。 因此,不能保证公司根据 NI 43-101 报告的“已证实矿产储量”、“可能矿产储量”、“已测量矿产资源”、“指示矿产资源”和“推断矿产资源”的任何矿产储量或矿产资源与公司根据证券交易委员会现代化规则所采用的标准编制的储量或资源估算相同。美国投资者还应注意,虽然证券交易委员会现在承认“指示矿产资源”和“推断矿产资源”,但投资者不应假设这些类别中的任何部分或全部矿化将转化为更高类别的矿产资源或矿产储量。使用这些术语描述的矿化在其存在性和可行性方面比已被定性为储量的矿化具有更大的不确定性。因此,投资者应注意不要假设公司报告的任何“指示矿产资源”或“推断矿产资源”在经济上或法律上是可开采的或将是可开采的。此外,“推断矿产资源”的存在以及是否可以合法或经济地开采存在更大的不确定性。因此,美国投资者也应注意不要假设“推断矿产资源”的全部或部分都存在。根据加拿大证券法,“推断矿产资源”的估计数不能构成可行性或其他经济研究的基础,除非在 NI 43-101 允许的有限情况下。因此,本演示文稿和本文引用的包含公司矿床描述的文件中包含的信息可能无法与美国公司根据美国联邦证券法及其规则和条例的报告和披露要求公开的类似信息进行比较。投资者应注意不要假设公司报告的任何“指示矿产资源”或“推断矿产资源”在经济上或法律上是可开采的或将可开采的。此外,“推断矿产资源”的存在以及是否可以合法或经济地开采存在更大的不确定性。因此,美国投资者也应注意不要假设“推断矿产资源”的全部或部分都存在。根据加拿大证券法,“推断矿产资源”的估计不能构成可行性或其他经济研究的基础,除非在 NI 43-101 允许的有限情况下。因此,本演示文稿和本文引用的包含公司矿床描述的文件中包含的信息可能无法与美国公司根据美国联邦证券法及其规则和法规的报告和披露要求公开的类似信息进行比较。投资者应注意不要假设公司报告的任何“指示矿产资源”或“推断矿产资源”在经济上或法律上是可开采的或将可开采的。此外,“推断矿产资源”的存在以及是否可以合法或经济地开采存在更大的不确定性。因此,美国投资者也应注意不要假设“推断矿产资源”的全部或部分都存在。根据加拿大证券法,“推断矿产资源”的估计不能构成可行性或其他经济研究的基础,除非在 NI 43-101 允许的有限情况下。因此,本演示文稿和本文引用的包含公司矿床描述的文件中包含的信息可能无法与美国公司根据美国联邦证券法及其规则和法规的报告和披露要求公开的类似信息进行比较。
Eric L. Jorgensen 和 Joseph J. Fuller 编写的交互式电子技术手册 现有的技术手册问题 国防部武器系统后勤支援技术信息 (TI) 系统真正整合的目标,是计算机辅助采购和后勤支援 (CALS) 和公司信息管理 (CIM) 计划所要求的,但由于各部门继续依赖纸质技术手册 (TM) 来获取大部分信息,因此无法实现这一目标。除了造成与生产、储存、控制、修改和使用大量纸张有关的严重长期后勤问题外,目前构建的 TM 本身无法整合到自动化、标准化、交互式、实时系统中,从而以高度易懂的形式传输和共享后勤支援信息。具体来说,纸质技术手册:a.生产和管理成本不必要地高昂。尽管业界广泛采用自动化创作系统,但纸质 TM 无法利用许多最新技术进步(包括数据库管理、信息存储和信息显示)。因此,需要额外的人员和设施来对信息进行物理控制,而这些信息本来可以更有效地处理。b.严重阻碍了给定物流流程(从单一维护行动到全面的船舶或飞机大修)中所需技术信息的许多活动的全面整合,以至于基于纸张的技术信息方法通常会严重降低物流支持行动的有效性。c. 可用性(例如,在查找所需的特定信息时)和可理解性(例如,在复杂的故障隔离过程中)很差,以至于严重减慢了维护过程,增加了错误部件拆卸率,并大大增加了培训时间。新兴解决方案为了减轻这些问题的严重性,国防部正在大力推进 TM 生产和管理流程的自动化。例如,一旦生产出来,TI 就可以进行光栅扫描,以数字形式存储和传输,并在使用时打印在纸上(“按需打印”)。通过将这种面向页面的材料与计算机可读的“导航”指令叠加,可以通过发光屏幕显示更容易地定位所需的特定信息,从而在一定程度上提高可用性。然而,上述类型的现有 TM 自动化尝试,虽然它们可能在物流的特定点提供有限的改进 -
Eric L. Jorgensen 和 Joseph J. Fuller 编写的交互式电子技术手册 现有的技术手册问题 国防部武器系统后勤支援技术信息 (TI) 系统真正整合的目标,是计算机辅助采购和后勤支援 (CALS) 和公司信息管理 (CIM) 计划所要求的,但由于各部门继续依赖纸质技术手册 (TM) 来获取大部分信息,因此无法实现这一目标。除了造成与生产、储存、控制、修改和使用大量纸张有关的严重长期后勤问题外,目前构建的 TM 本身无法整合到自动化、标准化、交互式、实时系统中,从而以高度易懂的形式传输和共享后勤支援信息。具体来说,纸质技术手册:a.生产和管理成本不必要地高昂。尽管业界广泛采用自动化创作系统,但纸质 TM 无法利用许多最新技术进步(包括数据库管理、信息存储和信息显示)。因此,需要额外的人员和设施来对信息进行物理控制,而这些信息本来可以更有效地处理。b.严重阻碍了给定物流流程(从单一维护行动到全面的船舶或飞机大修)中所需技术信息的许多活动的全面整合,以至于基于纸张的技术信息方法通常会严重降低物流支持行动的有效性。c. 可用性(例如,在查找所需的特定信息时)和可理解性(例如,在复杂的故障隔离过程中)很差,以至于严重减慢了维护过程,增加了错误部件拆卸率,并大大增加了培训时间。新兴解决方案为了减轻这些问题的严重性,国防部正在大力推进 TM 生产和管理流程的自动化。例如,一旦生产出来,TI 就可以进行光栅扫描,以数字形式存储和传输,并在使用时打印在纸上(“按需打印”)。通过将这种面向页面的材料与计算机可读的“导航”指令叠加,可以通过发光屏幕显示更容易地定位所需的特定信息,从而在一定程度上提高可用性。然而,上述类型的现有 TM 自动化尝试,虽然它们可能在物流的特定点提供有限的改进 -
这是带有会话号的公认论文列表。thetles尚未对HTML进行编辑。这将在发布完整程序之前得到照顾。