本论文由 AFIT Scholar 的学生研究生作品免费提供给您,供您开放访问。它已被 AFIT Scholar 的授权管理员接受并纳入论文和学位论文。有关更多信息,请联系 AFIT.ENWL.Repository@us.af.mil。
本论文由 AFIT Scholar 的学生研究生作品免费提供给您,供您开放访问。它已被 AFIT Scholar 的授权管理员接受并纳入论文和学位论文。有关更多信息,请联系 AFIT.ENWL.Repository@us.af.mil。
图 1:光聚合物分层系统 (Wikipedia.org)。...................................................................... 2 图 2:使用相交激光束的光雕塑过程 (Swainson, 1977)。........................................ 3 图 3:塔式喷嘴固体自由成型技术 (drajput.com)....................................................... 4 图 4:简单的分层铸造模具 (DiMatteo, 1976)。...................................................................... 4 图 5:粉末选择性激光烧结工艺 (Wikipedia.org)。...................................................... 5 图 6:FDM 工艺图 (Reprap.org)。............................................................................. 7 图 7:DFA 分析软件用户界面 (Boothroyd et al, 2011)。...................................................... 11 图 8:MakerBot 的 MakerWare 用户界面。(Makerbot.com)............................................. 14 ........... 20 图 10:GE Aviation 通过增材制造的燃油喷嘴(Rockstroh 等,2013 年)。 ........................ 21 图 11:通过 DMLS(EADS)优化和制造的两个航空航天支架。 ........................ 23 图 12:“Over-the-wall”设计方法图解(Munro & Associates,1989 年)。 ...... 24 图 13:成本与影响图“谁投射的阴影最大?”(Munro & Associates,1989 年)。 ......................................................................................................................................... 24 图 14:显示不同材料和制造方法之间兼容性的图表(Boothroyd & Dewhurst,2011 年)......................................................................................................... 26 图 15:alpha 和 beta 旋转对称值(Boothroyd 等,2011 年)。 ................................... 28 图 16:影响零件处理的几何特征(左)和其他特征(右) (Boothroyd et al, 2011). ........................................................................................................................................... 28 图 17:提高装配简易性的示例 (Boothroyd et al, 2011). ............................................................................................................. 28 图 18:影响插入时间的零件特征原始分类系统 (Boothroyd Dewhurst, Inc. 1999). ............................................................................................................. 30 图 19:影响手动处理时间的零件特征原始分类系统 (Boothroyd Dewhurst, Inc. 1999). ............................................................................................................. 31 图 20:原始控制器组装 (Boothroyd et al, 2011). ............................................................................................. 32 图 21:分析前(左)和分析后(右)的控制器组装 (Boothroyd et al, 2011). ................................................................................................................................................................. 34 图 22:当前门铰链的组件。 ...................................................................................................... 35 图 23:两个已安装铰链的 CATIA 模型和负载分析方向(湾流宇航)。 ...................................................................................................................... 36 图 24:弹簧球和铰链止动器的特写。 ...................................................................................... 37 图 25:重新设计的增材制造门铰链。 ...................................................................................... 39 图 26:合并前后鹅颈的视觉比较。 ............................................................................. 41 图 27:重新设计前后球柱塞壳体的视觉比较。 ............................................................................. 41 图 28:原始铰链组件上用于插入计算的投影槽。 ............................................................................. 43 图 29:重新设计的铰链组件上用于插入计算的投影槽。 ............................................................................. 43
ICAP II 调查结果 ................................................................................................ 36 ICAP III 调查结果 ................................................................................................ 36 DAG 2 级别 1 ........................................................................................................ 38 DAG 2 级别 2 ........................................................................................................ 38 DAG 3 级别 1 ........................................................................................................ 40 DAG 3 级别 2 ........................................................................................................ 40 DAG 4 级别 1 和 2 ............................................................................................. 42 干扰平均工作量 ............................................................................................. 42 ECMO 工作量分析 ............................................................................................. 44 飞行员工作量分析 ............................................................................................. 46 常见任务 ............................................................................................................. 48
Carolina Orozco Donneys 1,Eduardo Arbelaez 1,KarenLondoñoSaza1,Isabella Hernánánánánánánánánánánánánánánánánánánánánánánánánán,1. Abella Trujillo 1,Norma Murillo 1,Jose Dario Perea 1 1 ICESI大学,工程学院,生物科学系,生物处理和生物技术,哥伦比亚 *通讯作者:corozco@icesco@icseco@icesi.edu.co.co citation citation citation citation:citation citation citation citation citation:citation citation:Donneys,Donneys,Donneys,C. o. o.,arbelaez,E.,E.,Heraz iSaz Zoun Egría,I.,Castellanos,A.I.,Arevalo,C.,Victoria,S.,Majin,N.C.,España,L。, Guevara, NT、Trujillo, AI、Murillo, N. 和 Perea, JD (2024)。整合哥伦比亚太平洋传统知识和性别包容性以加强 STEM 教育:BECAP 倡议。欧洲 STEM 教育杂志,9(1),19。https://doi.org/10.20897/ejsteme/15748 出版日期:2024 年 12 月 25 日 摘要背景:培养学生对科学、技术、工程和数学 (STEM) 职业的兴趣是当前教育的主要目标之一。然而,中小学生对于 STEM 职业及其难度往往存在刻板印象,尤其是在拉丁美洲国家,因为这些国家在某些地区获得高等教育可能很复杂或似乎不可能。本研究旨在通过整合哥伦比亚祖先的太平洋传统知识和生物化学工程并在哥伦比亚高等教育机会有限的人群中推广 STEM 教育,制定有效的策略来消除耻辱。目标是帮助参与者了解科学在日常生活和社区中的更广泛的应用。
基因技术的应用范围从农业到医疗。最近,在 COVID-19 疫情期间,Moderna 等公司开发并获得了用于诊断和治疗目的的基因技术专利,例如 mRNA 疫苗。然而,专利保护为这些公司提供了垄断地位,最终限制了仿制药的国内生产,从而限制了人们获得救命的诊断和治疗的机会。当一家位于一国的公司在另一个国家申请专利以获得认可时,它实际上就阻止了该专利范围内任何技术的生产,无论该专利是否得到执行。然而,《与贸易有关的知识产权协议》、《生物多样性公约》和《名古屋议定书》以及其他文书规定各国有义务向其他国家转让技术。《与贸易有关的知识产权协议》和《名古屋议定书》允许各国免除基因技术的专利权。然而,一些国家已经达成了“TRIPS-Plus”协议,这些协议与《与贸易有关的知识产权协议》中的这些例外相叠加,并阻止各国利用这些例外。
航天国家对外太空探索活动的增加导致地球轨道上和重新进入大气层的太空垃圾不断增加。现行的责任制度是 20 世纪 60 年代和 70 年代美苏太空竞赛的结果,它无法减轻和阻止这种扩散。如果不采取主动措施,太空垃圾的堆积可能会升级为凯斯勒综合症,这是一种设想中的情景,即由于高冲击力太空物体碰撞的极端风险,太空探索及其相应的好处可能会变得不可行。本评论首先分析了现有的修改外层空间条约责任制度的提案。接下来,为了论证航天国家有清除源自其卫星和太空物体的太空垃圾的积极责任,本评论应用了三项具有里程碑意义的习惯国际法原则:污染者付费原则、预防原则和禁止跨界损害。最后,本评论提出了一个新颖的解决方案,即建立一个安全保证金计划,参与太空活动的国家必须缴纳保证金才能将物体和卫星发射到外层空间,这一计划效仿了现有的国际环境法解决海洋垃圾问题的努力。重点是采取预防措施减少外层空间产生的空间垃圾数量,这是确保太空作为航天国家共享资源继续使用的最有效的解决方案。
d sqzmrhs intqmdx intqmdx shld-hloqnhmf hlonqszms rdquhbd r zoodzk zmc hmbqdqdqdqdrgho&khslzm+ 1/7( - issepe sqmrmrhs sqmrmrhs sqmrmrhs sqqqqqhs sqqqqhs hr sqzzgt trzfd&shkzgtm ds zk-+ 1/05:ozsdk ds verse verse 1/1 rdquhbd- Trdqr nhmhnmr or Zm nm, cdlZmc qhccdrgZqd zqdrgZqdrgZqd sgs sgs sgd ccdmcZahksx or vZdk squdk shldr+ Zmc Zmc,to Zmc,to Zmc,to Zmc,to Zmc,to Zmc,to Zmc cqno,或者您是lnshuzsd bnmrtldqr s sgd rdquhbd trzfd&et% FGZRQNCZZGRSH S ZK-+ 1/10A( -
2020 年 11 月,加拿大隐私专员提议为决策主体创建 GDPR 启发的权利,并允许对违反这些权利的行为进行经济处罚。此后不久,为算法决策创建解释权的提议被纳入 C-11 法案《数字宪章实施法》。该评论提出,为运营商创建正确选择和监督人工智能代理的职责将是一种补充性的、可能比创建解释权更有效的问责机制。这些职责将是雇主正确选择和留住人类雇员职责的自然延伸。允许受害者根据疏忽雇用或监督人工智能系统作为代理的理论获得赔偿,将反映出他们日益增强的(但不是完全的)自主权,并避免受害者在证明其他责任理论的可预见性要素时面临的一些挑战。
本论文由 Scholars' Mine(密苏里科技大学图书馆和学习资源服务)提供。本作品受美国版权法保护。未经授权的使用(包括复制再分发)需要获得版权持有人的许可。如需更多信息,请联系 scholarsmine@mst.edu。