克雷佩林(Kraepelin)在他对精神分裂症(SZ)的早期描述中,将这种疾病描述为“没有指挥家的乐团。”克雷佩林进一步推测该“导体”位于额叶。在接下来的几十年中,来自多项研究的发现清楚地暗示了背外侧前额叶皮层(DLPFC)在SZ病理生理学中起着核心作用,尤其是在关键认知特征(例如在工作记忆和认知控制中定性)的关键认知特征。概述了与DLPFC功能相关的认知机制以及SZ中它们如何改变后,我们回顾了来自一系列神经科学方法的证据,从而解决了这些认知障碍如何反映出疾病潜在的病理生理学。特别是我们提供的证据表明,在一系列的空间和时间分辨率中,SZ中DLPFC的改变是显而易见的:从其细胞和分子结构到其总体结构和功能完整性,从MilliseCond到更长的时间标准。然后,我们基于DLPFC中神经元信号的变化如何改变神经活动的同步模式来产生大电路级的变化DLPFC激活中最终影响认知和行为。我们讨论了针对SZ中DLPFC功能的最初努力,这些努力的临床意义以及未来发展的潜在途径。
摘要5-羟色胺5-HT 1A受体引起了广泛的关注,作为治疗精神疾病的靶标。尽管该受体在新一代抗精神病药的作用的药理机制中很重要,但其表征仍然不完整。基于自显影术对脑组织的体外分子成像的研究,以及最近的体内PET成像,尚未产生明确的结果,特别是由于当前5-HT 1A放射性培训的局限性,由于缺乏特定的特异性和/或与所有5-HT 1A受体结合,无论其功能能力。功能活性G蛋白偶联受体的PET神经影像学的新概念使得通过启用新的研究范式来重新访问PET脑探索。对于5-HT 1A受体,现在可以使用具有高效能性激动剂特性的5-HT 1A受体放射性物体[18 f] -f13640,以特定可视化和量化功能活性受体,并将这些信息与受试者的病理学或药理学或药理学或药理学状态相关联。因此,我们提出成像协议,以遵循与情绪降低或认知过程有关的功能性5-HT 1A受体模式的变化。这可以改善对不同精神分裂症表型的歧视,并对对抗精神病药的治疗反应基础有更深入的了解。最后,除了靶向功能活跃的受体以洞悉5-HT 1A受体的作用外,该概念也可以扩展到对参与精神疾病的病理生理学或治疗的其他受体的研究。
传统的神经心理学测试不能代表日常生活中遇到的复杂和动态情况。沉浸式虚拟现实模拟可用于在受控环境中模拟动态和交互情况。在这种模拟中添加眼动追踪可以提供非常详细的结果测量,并且在神经心理学评估方面具有巨大的潜力。在这里,我们指示参与者(83 名中风患者和 103 名健康对照者)在虚拟超市环境中从购物清单中找到 3 或 7 件物品,同时记录眼球运动。使用逻辑回归和支持向量机模型,我们旨在预测参与者的任务以及他们是属于中风组还是对照组。通过有限数量的眼球运动特征,我们的模型在预测每个参与者被分配的购物清单是短的还是长的(3 件或 7 件物品)时实现了 0.76 的平均曲线下面积 (AUC)。将参与者识别为中风患者和对照组导致 AUC 为 0.64。在两个分类任务中,重访过道的频率是最容易产生分离的特征。因此,从虚拟现实模拟中获得的眼动数据包含一组丰富的特征,可用于检测认知缺陷,为潜在的临床应用打开了大门。
癌症是全球最难治疗的疾病之一,免疫治疗近年来在癌症治疗中取得了长足进步,美国食品药品管理局已批准了多种肿瘤免疫治疗药物。目前,免疫治疗面临诸多挑战,如特异性不足、细胞毒性、耐药性等。纳米粒子具有粒径小、表面功能稳定等特点,在抗肿瘤治疗中发挥着神奇的功效,聚合物胶束、脂质体、纳米乳剂、树枝状聚合物、无机纳米粒子等纳米载体被广泛应用,以克服癌症治疗中毒性、特异性不足、生物利用度低等缺陷。尽管纳米药物研究广泛,但只有少数纳米药物被批准使用。纳米药物在免疫治疗中的瓶颈或解决方案都需要进一步探索以应对挑战。本综述首先简要概述了几种癌症免疫治疗方法及其优缺点,然后介绍了纳米药物的种类、药物递送策略以及应用进展,最后重点介绍了纳米药物在免疫治疗和嵌合抗原受体T细胞治疗(CAR-T)中的应用及前景,旨在解决免疫治疗中存在的问题,本文的总体目标是深入了解纳米药物的潜在用途并提高免疫治疗的有效性和安全性。
摘要:有人提出,成人大脑的功能特征(所有这些都是在生命早期形成的)可能会影响大脑对阿尔茨海默病 (AD) 的易感性。我们之前对衰老加速的 OXYS 大鼠(一种散发性 AD 模型)的研究结果支持这一假设。在这里,为了阐明大脑成熟过程中出现的异常的分子遗传性质,我们分析了 OXYS 大鼠和 Wistar(对照)大鼠在大脑成熟的关键时期(P3 和 P10 岁;P:出生后天数)的前额皮质 (PFC) 和海马的转录组(RNA-seq 数据)。我们在两个大脑结构中发现了 1000 多个差异表达基因;功能分析表明神经元接触形成效率降低,这大概主要是由于线粒体功能缺陷所致。接下来,我们比较了从婴儿期到 AD 样病变进展阶段(共五个年龄段)大鼠 PFC 和海马中差异表达的基因。三种基因( Thoc3 、 Exosc8 和 Smpd4 )在整个生命周期中均在 OXYS 大鼠的两个脑区中表现出过度表达。因此,婴儿期 OXYS 大鼠脑中神经网络形成效率的降低可能是导致其出现 AD 样病变的原因。
几项研究表明,神经膜协调障碍(DCD)儿童的平衡障碍。然而,最近的一项荟萃分析报告说,现有研究都没有研究整个姿势任务中平衡的整个结构。目前尚不清楚在DCD中是否会改变自愿不受干扰的倾斜任务之前的预期姿势调整。预期的姿势调整对姿势控制和稳定限制以及这些机制中本体感受的贡献也未知。本研究比较了DCD(n = 30)参与者的压力位移中心与通常发展的参与者(n = 20)(9 - 12岁)。站在AMTI力板上,要求参与者在自然和眼睛闭合 +泡沫条件(八个分离的试验)中尽可能向前,向后,向右和向左倾斜。统计分析表明,与对照组相比,DCD组具有更大的预期姿势调整,最大压力偏移中心和更大的姿势不稳定性。特性条件在DCD中不会系统地影响姿势性能。但是,这些定义在中外侧方向上有所增加。这些障碍可能会干扰日常和体育活动中儿童的表现,甚至会对社会包容产生负面影响。
阿尔茨海默病(AD)是一种进行性、不可逆的神经退行性疾病,临床特征为认知障碍、行为异常和社交障碍,其与过量的β淀粉样蛋白(Aβ)沉积以及其他多种错误折叠的蛋白质、过度磷酸化的tau蛋白聚集体形成的神经纤维缠结以及神经元线粒体损伤导致神经元丢失密切相关。目前,对AD病理机制的研究已超过几十年,但仍未开发出针对这种复杂疾病的有效治疗方法,现有的治疗策略极其不稳定,从而导致AD患者不可逆的进行性认知下降。由于AD患者精神能力逐渐丧失,AD不仅给患者自身带来严重的身心痛苦,也给家庭和社会带来巨大的经济负担。因此,回顾基于基因编辑的精准医疗在新兴领域的进展至关重要。本文主要围绕CRISPR/Cas9技术在AD研究和基因治疗领域的应用进行综述,总结CRISPR/Cas9在AD模型构建、致病基因筛选、靶向治疗等方面的应用,最后对阻碍CRISPR/Cas9技术临床应用的一大挑战——递送系统的开发进行讨论。
抽象的视觉场损失和视觉空间忽视是大脑中风的经常后果。他们在许多日常活动中经常对独立性产生强大的影响。旨在减少这些残疾的康复非常重要,并且已经提出了几种技术来促进受损的视觉场的意识,补偿或恢复。我们在这里描述了使用适应性拳击疗法的康复干预措施,该疗法是针对特定病例量身定制的多学科干预措施的一部分。一名58岁的男子,有左同源性偏侧(HH)和温和的视觉空间偏爱,参加了右颞叶乳中风后六个月参加了36次拳击疗法。反复刺激了他的盲人和被忽视的半场,并通过拳击运动进行了训练,以改善他的健康半部的使用来补偿他的陈述。患者在培训开始之前显示出稳定的HH。经过六个月的拳击疗法,他报告了对视觉环境的认识提高了。至关重要的是,他的HH进化为左上的四局局部,并且对左侧刺激的空间关注得到了改善。几种认知功能,他的情绪也显示出改善。我们得出的结论是,拳击疗法有可能改善视觉场损失的个别患者的视觉空间障碍的补偿。
阅读采集涉及听觉和视觉刺激的整合。因此,低水平的多感觉整合可能有助于发育阅读障碍中的阅读中断。尽管阅读障碍在男性中更频繁地被诊断出来,而新兴的证据表明,性别障碍的神经基础可能会有所不同,但先前研究多感官整合的研究并未评估潜在的性别差异,也没有测试其神经相关性。在当前对88名青少年和年轻人的研究中,我们发现只有读障碍的男性在简单非语言刺激的多感官整合中表现出明确的作用。在神经水平上,与对照组相比,在N1和N2组件中响应于N1和N2组件的单性状况的女性和雄性对多感官的反应差异较小。此外,在与非语言智商相匹配的80名参与者的子样本中,与响应于N1成分的单性状况相比,左半球的雄性在左半球的差异较小。我们的研究表明,在男性中比女性阅读障碍症的衰落似乎更为严重。这提供了对性调节的认知过程的重要见解,这些过程可能赋予阅读困难的脆弱性。
胎儿生长限制(FGR)是一种复杂的产科条件,其中胎儿生长在病理上降低,最经常是因为胎盘无法提供足够的氧气和营养素来支持正常的胎儿发育(1,2)。FGR很常见,影响高资源国家的6-9%的怀孕(3、4)。胎盘不足是用于描述胎盘(1)异常发育和功能的伞术,其特征是子宫牙本血流降低,跨胎盘的气体和底物转移降低以及胎儿生长降低。响应胎盘不足,受限制的胎儿经历缺氧(5),通过重新分布心脏输出来对优先提供必需的器官(脑和心脏)产生血流动力学反应(6)。在FGR中,这种适应性反应可以延长,从而导致脑血管补偿(脑部保留)和不对称的胎儿生长,其头部大小相对较弱,但身体较薄和/或较短的身体(7)。十年前,术语FGR或IUGR(宫内生长限制)通常被互换使用,胎龄(SGA)很小。2016年FGR的共识定义为描述病理性FGR的婴儿提供了一个必不可少的框架,并从宪法上很小但健康的SGA婴儿中对死亡率和发病率的敏感性更大。患有FGR的婴儿通常是早产的,尤其是当FGR早期发作(妊娠不到32周的诊断)时(8),而FGR是围产期死亡/死亡的最强风险因素(8,9)。最近的系统评论报告SGA现在用于描述相对于胎龄和性别的估计胎儿体重或出生体重的任何婴儿<10个百分位数,而真实的FGR被定义为估计的胎儿体重<10 th%TH%TH%TH%Theplatial the the%,以及胎儿功能障碍的产前多普勒指数,胎儿功能障碍或估计的胎儿体重<3 rd rd百分位数(2)。婴儿早产可能会暴露于产前糖皮质激素以诱导肺部成熟,但是这些糖皮质激素可能对FGR的器官发育产生不同的影响,并适当生长的胎儿(10,11)。出生后,FGR与新生儿心血管,呼吸道和神经病性病变有关,与胎龄相比,率显着升高(7)。例如,心脏形状和心血管功能发生了变化(12-14),而患有FGR的婴儿在通风和新生儿重症监护术上花费更多的时间,而不是年龄匹配的适当生长的婴儿(15)。尽管在子宫内存在脑部保留率,但在童年时期出生的婴儿的神经发育延迟的可能性增加,包括认知功能不佳和智能商(IQ)得分(3、16、17)的降低,以及发展运动脱落效力的智能(3,16,17)的风险增加。确定与胎盘不足和FGR相关的器官特异性结构和功能变化,需要适当的动物模型,其中重大器官的发育和生理适应性复制了人类FGR中已知的遗嘱。利用大小的动物实验设计,有多种胎盘不足的动物模型,慢性胎儿缺氧和/或FGR(19,20)。
