LIGENTEC 光转换 Liquid Instruments Litron Lasers Ltd Luna Innovations Masimo Semiconductor MDPI MegaWatt Lasers Menhir Photonics Menlo Systems GmbH Modulight Corporation MPS Micro Precision Systems AG n2-Photonics GmbH nanoplus America, Inc NKT Photonics, Inc. NM Laser Products, Inc. Northrop Grumman SYNOPTICS Nuphoton Technologies, Inc. Octave Photonics OEwaves Inc. Optica Optimax Systems, Inc. Opto-Alignment Technology, Inc. OXIDE Corporation OZ Optics Limited PHASICS Corp. 物理与光学:北卡罗来纳大学夏洛特分校 Picoquant Photonics North America, Inc. Polariton Technologies Ltd PriTel Quantum Opus RAICOL CRYSTALS Sacher Lasertechnik GmbH Sandia National Laboratories Santec USA Corporation Single Quantum SLF Svenska Laserfabriken AB Specialised Imaging Sphere Ultrafast Photonics SA SPIE:国际光学与光子学学会标准
激光能量(激光椎间盘切除术)或射频偶联(核成形术)描述/背景激光能(激光盘切除术)和辐射频(RF)共振成形术(核成形术)已被评估以减轻椎间盘的解压缩。在荧光镜指导下激光椎间盘切除术,将针或导管插入椎间盘核中,并通过其指向激光束以使组织蒸发。对于椎间盘核成形术,双极射频能量被指向椎间盘上浸泡组织。正在评估这些微创手术以治疗椎间盘痛。椎间盘底部疼痛盘状下腰痛是一种常见的多因素疼痛综合征,涉及腰痛而没有辐射症状的发现,并结合了放射学确认的退行性椎间盘疾病。典型的治疗包括对物理疗法和药物治疗的保守治疗,在更严重的情况下可能会进行手术减压。治疗典型治疗包括对物理疗法和药物管理的保守治疗,在更严重的情况下可能会进行手术减压。多年来,随着与椎间盘疾病相关的下腰痛的治疗,已经研究了多种微创技术。技术可以广泛分为旨在去除或烧毁盘材料的技术,从而对盘进行解压缩,以及旨在改变盘环的生物力学的技术。前一种类别包括葡萄球蛋白注射,自动经皮腰椎椎间盘切除术,激光椎间盘切除术,以及最近使用RF能量的椎间盘减压,被称为椎间盘核成形术。
réf。désignationchf/ carton 041-872154核纳姆病原体(4x96)NC-041-872155核纳姆核法DX病原体(4X96)NC-041-872157核量DNA/ RNA/ RNA/ RNA/ RNA水(4x96)NC-0441-441-8721591591591591591591599696核NC -041-872160 NucleOmag 96组织(4x96)NC -041-872162核量DNA细菌(4x96)NC -041-872164核量 041-872168 NucleoMag RNA (4x96) NC - 041-872172 NucleoMag Plant (24x96) NC - 041-872173 NucleoMag Plant (4x96) NC - 041-872175 NucleoMag 384 Plant (4x384) NC - 041-872177 NucleoMag Blood 200 µl(4x96)NC -041-872178核纳族血液3ML(1x96)NC -041-872180核量CFDNA(4x48)NC -041-872182核量(24x96)NC -041-041-87721-96核 - 4 041-872185核量DNA拭子(24x96)NC-041-872186 Nucleomag DNA签名(4x96)NC-041-872188 NucleoMag Forensic(4x96) Nucleomag病毒(4x96)NC -041-872210 Nucleomag DNA食物(4x96)NC-
今年,克莱奥(Cleo)拥有八位杰出全体扬声器,其中包括六名诺贝尔奖获得者。周一,我们将听到Eric Betzig,Stefan Hell and W.E.Moerner的成就,这些成就破坏了共聚焦显微镜的衍射极限,以及Tony Heinz在二维材料的光学特性上。星期二下午将以史蒂文·楚(Steven Chu)和木马(Hiroshi Amano)为特色。Chu将描述新成像技术将如何使我们能够对基因和蛋白质中发生的情况有详细的分子理解,而Amano将讨论LED照明应用和当前问题。在星期三晚上,我们将庆祝国际光明年,并在结构化的光线下听到迈尔斯·帕吉特(Miles Padgett)的声音,而nakamura将向我们介绍有关基于GAN的光电设备,其技术和科学基金会的最新消息。
Yujie Ding,美国利哈伊大学,主席 Weili Zhang,美国俄克拉荷马州立大学,替补主席 Jerry Chen,美国麻省理工学院林肯实验室 Nils Fernelius,美国空军研究实验室 Manfred Helm,德国德累斯顿-罗森多夫研究中心 Iwao Hosako,日本国立信息通信技术研究所 Hiromasa Ito,日本理化学研究所 Peter Jepsen,日本理工大学丹麦,丹麦 Thomas Kleine-Ostmann,德国联邦物理技术研究院 Ajay Nahata,Univ.美国犹他州 Tsuneyuki Ozaki,国家科学研究所加拿大科学研究中心 Ci-Ling Pan,Natl.清华大学,中国 石伟,NP Photonics,Inc.,美国 David Zimdars,Picometrix,LLC,美国
ASA科学的初学者,Colin Munro MacLeod授予了最奇妙的礼物,这是重大发现的关键作用,这一发现极大地改变了生物学的过程。 很棒的礼物是,它并不是不合同的宝藏。 相反,由于今天还没有完全清楚的原因,Avery,Macleod和McCarty的示范表明,脱氧核糖核酸是基因所构成的东西很慢,无法获得普遍接受,并且从未真正以适当正式的形式方式致敬。 这一事件是在1944年现年著名的实验医学杂志上的题为:“题为:“关于诱导肺炎球菌类型的物质转化的化学性质的研究。。ASA科学的初学者,Colin Munro MacLeod授予了最奇妙的礼物,这是重大发现的关键作用,这一发现极大地改变了生物学的过程。很棒的礼物是,它并不是不合同的宝藏。相反,由于今天还没有完全清楚的原因,Avery,Macleod和McCarty的示范表明,脱氧核糖核酸是基因所构成的东西很慢,无法获得普遍接受,并且从未真正以适当正式的形式方式致敬。这一事件是在1944年现年著名的实验医学杂志上的题为:“题为:“关于诱导肺炎球菌类型的物质转化的化学性质的研究。通过从肺炎III型分离的脱氧核糖核酸馏分诱导转化。”