近年来,出现了许多论文讨论不同模型(如 CFT、结点理论等)的 magic 和 mana 属性 [1–3]。这些量表征此类模型中定义的某种量子力学状态与 Clifferd 群元素的距离 [4]。根据 Gottesmann-Knill 定理 [5],Clifferd 群元素可以在经典计算机上进行有效建模。因此,有人声称“magic”实际上是某种状态的非经典性,而 mana 则衡量这种非经典性。如果结合量子计算讨论这些属性,这些属性可能很重要。Gottesman-Knill 定理基于以下事实:Clifferd 群是所研究群 G 的一个有限子群,而 G 是几个 SU(N) 的张量积。然而,它并不是唯一的有限子群。对于同一个群 G ,可以定义无数个这样的子群。其中,克利福德群的定义性质是它与 sigma 矩阵的联系。从量子计算的角度来看,没有必要要求这一点。因此,根据想要向量子计算机呈现的问题集,可以对 mana 进行不同的定义。我们认为 mana 实际上是一种相对属性,而不是绝对属性。在本文中,我们将介绍克利福德群的通常定义方式以及如何对其进行修改以获得其他有限子群。我们将应用这个新的 mana 定义来研究结点状态。结点理论是一个被广泛研究的课题,与其他理论有很多关系。其中,结点理论与量子计算之间存在联系,它既提供了使用量子算法计算结点多项式的方法,也提供了将量子算法描述为有效拓扑场论中的一些结点配置 [14]- [19]。这涉及通过 Reshetikhin-Turaev 算法 [6]- [13] 使用酉矩阵计算结点。具体来说,对于某些特定的结点系列,任何量子算法都可以描述为一系列结点的连续近似 [18,19]。然而,在本文中,我们讨论了结点理论的不同方法。法力和魔法是量子态(密度矩阵)的属性,而不是酉运算。有一种方法可以定义对应于结点的量子态 [2],使用拓扑场论的思想 [20,21]。这个密度矩阵的矩阵元素由特殊点处的结点多项式构成。因此,这种状态的经典性为我们提供了有关如何在经典计算机上计算这些结点不变量的一些信息。论文组织如下。在第 2 章中,我们定义了 Clifferd 群,它是 SU ( N ) 群的一个有限子群。在第 3 章中,我们提供了 mana 的定义,就像其他关于该主题的论文(如 [1–3])中给出的那样。在第 4 章中,我们讨论了 mana 定义中的歧义,并展示了如何修改定义以给出与 SU ( N ) 的不同有限子群相关的 mana。在第 4 章中,我们根据 [2,20,21] 定义了描述不同结的量子力学状态。在第 5 章中,我们研究了结状态下的 mana 是什么样子,以及如何通过不同的 mana 定义来改变它。
量子计算中最著名的结果之一是关于在古典计算机上模拟量子计算的资源成本的陈述。Gottesman-Knill Theorem指出,由具有稳定剂状态的cli or or组成的量子计算可以在具有多项式运行时的经典算法的意义上进行经典模拟,从而可以从输出>
要查看设备凭证,请选择 Cisco DNA Center 菜单 -> 配置 -> 库存 -> 选择设备 -> 操作 -> 库存 -> 编辑设备(Cisco DNA Center -> 配置,然后单击“验证”并确认所需凭证(CLI 和 SNMP)已通过绿色复选标记验证(包括 netconf,如果适用)。
•如果您安全的电子邮件和网络管理器的任何服务都使用无法初始化的保险库服务,则可以通过邮件,Web界面和CLI接收警报消息。如果启用了加密,您将始终收到警报邮件。如果禁用了加密,则仅在配置了使用Vault服务的服务时才收到警报邮件。您可以使用AdminaccessConfig>
Gottesman and Chuang(1999)引入的量子组合的传送模型激发了Clif-Ford层次结构的发展。尽管具有量子计算的内在价值,但与该模型密切相关的魔术状态蒸馏的广泛使用强调了理解层次结构的重要性。除了诊断单位的情况外,人们对该等级结构的结构有限有限(Cui等,2017; Rengaswamy等人。2019)。我们通过Weyl(即Pauli)在这些级别上扩展了层次结构的第二和第三层的结构,第一个级别是无处不在的Pauli组。尤其是我们对Pauli Group上标准的操作的支持。自从第三级统一的保利会产生Trace-Lise Hermitian Cli效应以来,我们也表征了他们的Pauli支持。半单位单位在电视模型中节省了Ancilla,我们通过同骨转移探索他们的Pauli支持。最后,我们证明,直到通过clif-ford乘法,每个第三级统一通勤至少都使用一个Pauli矩阵。这可以无力地使用,以表明,直到通过cli的繁殖,每个第三级统一都在保利组的最大交换亚组上进行。另外,可以看出,后者意味着Beigi和Shor(2010)证明的广义半乳房构想。我们讨论了量子误差校正和高空产品设计中的潜在应用。
(service side), route maps, BFD PMTU, CoS marking (802.1P), static and service side NAT, NAT pool support for DIA, NAT using loopback interface address, HQoS, per-tunnel QoS, Ethernet subinterface QoS, WAN loopback support, OMP redistribution, service VPN redistribution, mapping BGP communities to OMP tags, match and set communities during BGP to OMP redistribution (localized and centralized policy), secondary IP address support on SVI (interface VLAN), TLOC extension, DHCP options support, BFD for BGP/OSPF/EIGRP - CLI template, NTP server support, DIA Tracker: Interface tracker for DIA, ability to track static route on service VPN, per-class/DSCP BFD for AAR, ACL matching ICMP,增强策略路由(CLI模板),巨型帧(1GE接口),自定义应用程序支持(用于应用程序意识路由),SD-AVC,灵活的Netflow,EVPN,MacSec支持,自动化服务链条和插入。
使用本指南安装硬件并执行初始软件配置,例行维护和对EX4400开关的故障排除。完成本指南中涵盖的安装和基本配置过程后,请参阅MIST有线保证文档,以了解有关开关的配置和管理的更多信息。您也可以参考Junos OS文档,以获取有关使用Junos OS CLI的软件配置的更多信息。
连续变量簇状态与将量子比特编码为玻色子模式的 Gottesman-Kitaev-Preskill (GKP) 结合使用时,可实现基于容错测量的量子计算。对于四轨晶格宏节点簇状态,其构造由固定的低深度分束器网络定义,我们表明,Clifferd 门和 GKP 误差校正可以在单个传送步骤中同时实现。我们给出了实现 Clifferd 生成集的明确方法,并在簇状态和 GKP 资源有限压缩的情况下计算逻辑门错误率。我们发现,在 11.9–13.7 dB 的压缩下,可以实现与拓扑码阈值兼容的 10 − 2 – 10 − 3 的逻辑错误率。所提出的协议消除了先前方案中存在的噪声,并将容错所需的压缩置于当前最先进的光学实验范围内。最后,我们展示了如何直接在簇状态中产生可提取的 GKP 魔法状态。
注册 AWS 账户 ................................................................................................................................ 7 创建具有管理访问权限的用户 ................................................................................................................ 7 配置 IAM 用户或角色 ........................................................................................................................ 9 添加数据湖管理员用户或角色 ................................................................................................ 11 创建 S3 存储桶 ................................................................................................................................ 12 创建数据存储 ................................................................................................................................ 12 设置导入权限 ................................................................................................................................ 13 设置导出权限 ................................................................................................................................ 15 安装 AWS CLI ................................................................................................................................ 18 教程 ................................................................................................................................................ 19 管理数据存储 ................................................................................................................................ 21
气候变化的影响正在美国各地蔓延,包括灾害成本不断增加,干旱、高温和降水的变化虽然缓慢但明显。这些变化对联邦政府的服务和计划构成了财务风险。根据总统在第 14030 号行政命令“气候相关财务风险”中的指示,管理和预算办公室正在与联邦机构合作,对政府的气候财务风险敞口进行评估,并采取措施降低这些风险对政府和国家的影响。本章介绍了两项关于气候财务风险对机构计划的详细评估,特别是美国农业部 (USDA) 的牲畜饲料灾害计划;以及农业部森林服务局 (USDA FS) 和美国内政部 (DOI) 的野火扑灭计划。本章还介绍了其他机构的亮点,展示了目前正在采用的各种方法来评估机构计划、设施和服务的物理气候风险。今年关于联邦气候金融风险的章节指出: