使用气候模型登山者-X,我们提出了一种有效的方法,可以吸收涵盖现在22000至6500年的最后一次脱位的表面温度的时间演化。数据同化方法结合了数据和管理气候系统的基本动力学原理,以提供系统的状态估计,这比仅使用数据或单独模型可以获得的系统要好。在应用集合Kalman滤波器方法时,我们利用并行数据同化框架(PDAF)中的进步,该框架(PDAF)提供了并行数据同化功能,计算时间的增加相对较小。我们发现数据同化溶液在很大程度上取决于腐烂的冰盖的背景演变,而不是同化的温度。两种不同的冰盖侦察结构会导致不同的冰川融化病史,影响了大规模的海洋结构,从而影响了表面温度。我们发现,数据同化的影响在区域尺度上比全球平均值更为明显。尤其是,数据同化在千禧一代变暖和冷却阶段的效果更强,例如BØlling-AllerØD和年轻的Dryas,尤其是在具有异质温度模式的高纬度地区。我们的方法是对多千年时间尺度进行全面的古平方分析迈出的一步,包括将可用的古气候数据纳入了代表区域气候的不确定性。
• % UG AA Enr: 8.8% • % UG Hisp Enr: 3.1% • % UG URM Enr: 15.2% • % GR URM 入学率: 11.5% • URM 保留率: 57.8% • 低收入保留率: 60.2% • URM 毕业率: 30.7% • 低收入毕业率: 37.9% • 按 URM 划分的学士学位: 310 • 按低收入划分的学士学位: 1276 • %URM 终身教职教员: 9.4% • %URM 管理人员: 14.0%
摘要 高效的轨迹预测工具将成为未来基于轨迹的运营 (TBO) 的关键功能。除了管制员的行动之外,爬升飞行中的不确定性是飞行轨迹预测误差的主要组成部分。出于运营方面的考虑,飞机起飞重量和爬升速度意图(定义爬升剖面的关键性能参数)并不完全适用于基于回合的轨迹预测基础设施。在空中交通流量管理范围内,扇区进入和退出时间(包括爬升结束和下降开始的时间)是需求容量平衡过程的主要输入。在这项工作中,我们专注于爬升轨迹的不确定性,以量化和分析它们对爬升至巡航高度的时间的影响。我们通过飞机飞行记录数据集(即 QAR)使用了模型驱动的数据统计方法。根据此分析,为飞机起飞重量和速度意图生成了概率定义。获得了这些爬升参数与飞行距离之间的回归,以减少战略层面的不确定性。此外,通过自适应不确定性减少来降低爬升不确定性也在飞行战术层面得到体现。通过模拟,说明了降低飞机质量不确定性对爬升时间的影响。关键词:空中交通管理、轨迹预测、不确定性量化、BADA 缩写